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COASTING-BEAM TRANSVERSE COHERENT INSTABILITIES 
  Single-particle equation formalism (9 Slides) 

  Landau damping considering an externally given beam 
frequency spectrum (1) 

  Physical origin of Landau damping (11) 
  Landau damping of collective instabilities (9) 
  Landau damping by external (1-D) non-linearity (17) 
  General dispersion relation to be solved (7) 

  With momentum spread from chromaticity and/or slip factor 
  With 1D nonlinearity (in the plane of coherent motion) 

  Landau damping for a collimated beam (17) 
  Landau damping with 2-dimensional betatron tune spread from 

both octupoles and non-linear space charge (7) 
  Effect of linear coupling between the transverse planes (35) 

  Transfer of instability growth rates 
  Transfer of Landau damping 
  Emittance sharing and exchange 
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SINGLE-PARTICLE EQUATION FORMALISM (1/9) 

  Single-particle (i) equation of motion (e.g. in the horizontal plane) 

2 

€ 

˙ ̇ x i + Q0x,i
2 Ωi

2 xi =
Fx,i

γ m0

  The (perturbative) force can be expanded to first order in terms of 
the test particle’s motion and the average beam position to give 

€ 

Fx,i =
∂Fx,i

∂xi

 

 
 

 

 
 

x = 0

xi +
∂Fx,i

∂x 
 

 
 

 

 
 

xi = 0

x 

€ 

Qx,i
2 ≈Q0x,i

2 + 2Q0x,iΔQinc,x

€ 

ΔQinc,x = −
1

2Q0x,iΩi
2 γ m0

∂Fx,i

∂xi

 

 
 

 

 
 

x = 0
=> with 

It was called  
before 

€ 

Qx0

It was called  
before 

€ 

ΔQincoh
x
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  The coherent motion can be solved by choosing 

€ 

xi = x 

€ 

ΔQcoh,x = −
1

2Q0x,iΩi
2 γ m0

∂Fx,i

∂xi

 

 
 

 

 
 

x = 0

+
∂Fx,i

∂x 
 

 
 

 

 
 

xi = 0

 

 
 
 

 

 
 
 

  Taking into account the external focusing forces, the coherent and 
incoherent forces (space charge + wall), the equation of motion of a 
test particle i can thus be written as 

€ 

˙ ̇ x i +Ωi
2 Q0x,i

2 + 2Q0x,iΔQinc,x( ) xi = −2Ωi
2 Q0x,i ΔQcoh,x − ΔQinc,x( ) x 

  The relation between the “generalized Laslett tune shifts” and the 
horizontal coupling impedance is given by 

€ 

Zx ω( ) =
j

eβ I x 
F x,i

0

2π R

∫ ds = − j 2π Rγ m0

eβ I
2Ωi

2Q0x,i ΔQcoh,x − ΔQinc,x( ) ω( )

€ 

I = N e f0

Contribution from 
dipolar impedance 

Contribution from quadrupolar impedance  
in case of asymmetric structure 

SINGLE-PARTICLE EQUATION FORMALISM (2/9) 

Circular machine 

3 
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SINGLE-PARTICLE EQUATION FORMALISM (3/9) 

4 

  In an accelerator, the spread in betatron frequency  of the beam 
comes from several sources  

€ 

Ωi pi( ) =Ω0 1−η
Δpi
p0

 

 
 

 

 
 

€ 

Q0x,i ˆ x i, ˆ y i, pi( ) = Q0x0 1+ ξx
Δpi

p0

 

 
 

 

 
 + fext ˆ x i, ˆ y i( )

€ 

ΔQinc,x ˆ x i, ˆ y i, pi( ) = ΔQinc,x 0 +
∂ΔQinc,x

∂ pi

Δpi + f int ˆ x i, ˆ y i( )

€ 

Δpi = pi − p0

€ 

η =
1
γ tr
2 −

1
γ 2

= −
dΩi

dpi
pi
Ωi

€ 

ξx =
dQ0x,i

dpi
pi
Q0x,i

Betatron amplitudes 
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SINGLE-PARTICLE EQUATION FORMALISM (4/9) 

5 

  The solution of the equation of unperturbed motion is written as 

€ 

xi = ˆ x i cos ϕx,i( )

€ 

˙ ϕ x,i = Qx,iΩi =ωx,i = Qx 0Ω0 1− ˙ τ i( ) +ωξ x
˙ τ i + ˙ ϕ x,i ˆ x i, ˆ y i( )

€ 

˙ ̇ x i + ˙ ϕ x,i
2 xi = 0 => 

€ 

˙ τ i = η
Δpi
pi

€ 

τ i = τ 0 + ˙ τ i t

Constant => Coasting beam 

€ 

ωξ x
= Qx0Ω0

ξx
η

Time interval between the passage of 
the synchronous particle and the test 

particle 
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SINGLE-PARTICLE EQUATION FORMALISM (5/9) 

6 

€ 

ϕx,i = Qx0Ω0 + ˙ ϕ x,i ˆ x i, ˆ y i( )[ ] t + ωξ x
−Qx 0Ω0( ) τ i +ϕ0x,i

  Suppose that at time            a perturbation is imposed on the beam 
so that each azimuthal slice is displaced transversally by an 
amount           . This pattern  is necessarily closed around the 
circumference and therefore can be decomposed into a Fourier 
series € 

t = 0

€ 

x t = 0,ϑ( )

€ 

x t = 0,ϑ( ) = X nx
e− j nxϑ

nx = −∞

nx = +∞

∑ Azimuthal mode number.  
The horizontal wave number is  

€ 

kx = nx /R

=> 
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SINGLE-PARTICLE EQUATION FORMALISM (6/9) 

7 

=> It is only necessary to consider the evolution of a single sinusoidal 
wave  

€ 

nx

  The betatron oscillation of the beam centre which was at azimuth    
  at time            is then given by 

€ 

ϑc, 0

€ 

t = 0

€ 

x t,ϑ c,0( ) = X e j ω c t− nxϑ c,0( )€ 

x t = 0,ϑ( ) = X e− j nxϑ

€ 

X = X nx

€ 

ωc =QcΩ0

€ 

ϑ =ϑ c,0 +Ω0 t

=> The position of the whole beam in azimuth and time can be 
described as follows 

€ 

x t,ϑ( ) = X e j nx +Qc( ) Ω0 t− nxϑ[ ]

Coherent betatron frequency 
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SINGLE-PARTICLE EQUATION FORMALISM (7/9) 

8 

  Relation between the coherent tune and the local collective 
frequency (frequency observed at a fixed azimuth) 

€ 

ω = nx +Qc( ) Ω0

  The influence of the wake fields can be calculated either in the 
laboratory or in a moving-frame that goes around with the particle. 
In the present case, the second (hydrodynamic) view is adopted. 
Then, the derivatives have to be taken along the orbit of the particle  

€ 

d /dt = ∂ /∂ t + ˙ ϑ i ∂ /∂ϑ i = j ω − nxΩi( )

  The steady-state solution of the test particle has the same time and 
azimuthal dependence as the driving term. We then look for a 
particular solution of the form 

€ 

xi t,ϑ( ) = Xi e
j ω t− nxϑ( )
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SINGLE-PARTICLE EQUATION FORMALISM (8/9) 

9 

=> 

€ 

Xi = −
j eβ I Zx

2π Rγ m0

X 
ωx,i
2 − ω − nx Ωi( ) 2

 

 
 
 

 

 
 
 

€ 

ωx,i
2 − ω − nxΩi( ) 2 ≈ 2ωx0 ωx,i − ω − nxΩi( )[ ]

€ 

Xi = −
j eβ I Zx

2ωx0 2π Rγ m0

X 
ωx,i − ω − nx Ωi( )

 

 
 

 

 
 

  Therefore, in the absence of a frequency spread 

€ 

Δωc =ωc −ωx0 =Ux − jVx

Real frequency shift Instability growth rate 
€ 

Xi = X => 
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SINGLE-PARTICLE EQUATION FORMALISM (9/9) 

10 

€ 

Ux − jVx( ) ω( )
=

j eβ I Zx ω( )
2ωx0 2π Rγm0

=
I c j Zx ω( )

4 π Qx0 Et / e( )

Laslett, Neil and  
Sessler (LNS) coefficents 

€ 

ωc =ωR + j ω i

€ 

e jω c t = e j ω R + j ω i( ) t = e jω R t e
t
τ

=> 

€ 

τ x = −
1
ω i

=
1
Vx

  The instability rise-time [in s] is given by 

€ 

ω = nx +Qc( ) Ω0 ≈ nx +Qx0( ) Ω0

=> 

€ 

τ x =
4 π Qx0 Et / e( )

I c × − Re Zx ω( )[ ]{ } Reminder: The real part  
of the impedance is < 0 for  

frequencies < 0  
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  This expression constitutes a “dispersion relation”, since it 
specifies the dependence of the oscillation frequency      on the 
wave number 

€ 

ω

€ 

kx = nx /R€ 

ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫
 

 
  

 

 
  

−1

= Ux − jVx€ 

ρx ωx,i( )
−∞

+∞

∫ dωx,i =1

€ 

X = ρx ωx,i( )
−∞

+∞

∫ Xi dωx,i

Assuming that they  
do not depend on the incoherent 

frequencies 

LANDAU DAMPING CONSIDERING AN EXTERNALLY GIVEN 
BEAM FREQUENCY SPECTRUM 

  If the driving frequency belongs to the betatron frequency spread, 
then the dispersion relation contains a singularity. This leads us to 
the important concept of Landau damping, which will be reviewed in 
the next section  
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PHYSICAL ORIGIN OF LANDAU DAMPING (1/11) 

  Landau damping is a general process that arises when one 
considers a whole collection of particles or other systems which 
have a spectrum of resonant frequencies, and interact in some way 

  In accelerators we are usually concerned with an interaction of a kind 
that may make the beam unstable (wake fields), and we want to find 
out whether or not (and how) the spread of resonant frequencies will 
stabilise it 

  If the particles have a spread in their natural frequencies, the motion 
of the particles can lose its coherency  

  In order to understand the physical origin of this effect, let us first 
consider a simple harmonic oscillator which oscillates in the x-
direction with its natural frequency. Let this oscillator be driven, 
starting at time t = 0, by a sinusoidal force. The equation of motion is  

12 € 

˙ ̇ x i +ωx,i
2 xi = f cos ωc t( )

€ 

xi 0( ) = 0

€ 

˙ x i 0( ) = 0
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PHYSICAL ORIGIN OF LANDAU DAMPING (2/11) 

13 

  The solution is 

€ 

xi t > 0( ) = −
f

ωc
2 − ωx,i

2 cos ωc t( ) − cos ωx,i t( )[ ] =
f

2ωx0

sin ωx0 t( )
sin ωc −ωx,i( ) t /2[ ]

ωc −ωx,i( ) /2

  Consider now an ensemble of oscillators (each oscillator represents 
a single particle in the beam) which do not interact with each other 
and have a spectrum of natural frequency                with a distribution         
            normalised to unity. As assumed previously, the origin of the 
betatron frequency spread is not specified: an externally given beam 
frequency spectrum is supposed  

  Now starting at time t = 0, subject this ensemble of particles to the 
driving force                 with all particles starting with initial conditions 
        and          . We are interested in the ensemble average of the 
response, which is given by superposition by  

€ 

ωx,i

€ 

ρx ωx,i( )

€ 

f cos ωc t( )

€ 

xi 0( ) = 0

€ 

˙ x i 0( ) = 0

€ 

x t( ) = −
f

2ωx0

1
ωc − ωx,i

cos ωc t( ) − cos ωx,i t( )[ ]
−∞

+∞

∫ ρx ωx,i( ) dωx,i
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PHYSICAL ORIGIN OF LANDAU DAMPING (3/11) 

14 

  Changing the variable 

€ 

u =ωx,i − ωc

€ 

x t( ) =
f

2ωx0

cos ωc t( ) − cos ωc t + u t( )[ ]
−∞

+∞

∫
ρx u +ωc( )

u
du

=
f

2ωx0

cos ωc t( ) 1− cos u t( )[ ]
−∞

+∞

∫
ρx u +ωc( )

u
du + sin ωc t( ) sin u t( )

−∞

+∞

∫
ρx u +ωc( )

u
du

 

 
 
 

 

 
 
 

€ 

lim
t→+∞

sin u t( )
u

= π δ u( )

€ 

lim
t→+∞

1− cos u t( )
u

= P.V. 1
u
 

 
 
 

 
 

  If we are not interested in the transient effects immediately following 
the onset of the driving force, we may use the following formulae  
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PHYSICAL ORIGIN OF LANDAU DAMPING (4/11) 

15 

€ 

x t( ) =
f

2ωx0

cos ωc t( ) P.V.
ρx ωx,i( )
ωx,i − ωc

dωx,i
−∞

+∞

∫ + π ρx ωc( ) sin ωc t( )
 

 
 
 

 

 
 
 

  The sign of the            term relative to the driving force depends on 
the sign of                            . Generally, this term is approximately 
given by        outside the spectrum and crosses through zero 
somewhere inside the spectrum. A system is referred to as 
“capacitive” or “inductive” based on whether its sign is positive or 
negative 

  The          term has a definite sign relative to the driving force, 
because             is always positive. In particular,       is always in 
phase with the force, indicating work is being done on the system. 
The system always reacts to the force “resistively” 

€ 

cos ωc t( )

€ 

P.V. dωx, i ρx ωx, i( ) / ωx, i −ωc( )
−∞

+ ∞

∫

€ 

1/ ωx, i −ωc( )

€ 

sin ωc t( )

€ 

ρx ωc( )

€ 

˙ x 

=> 
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PHYSICAL ORIGIN OF LANDAU DAMPING (5/11) 

16 

  The Landau damping effect is to be distinguish from a “decoherence 
(also called phase-mixing, or filamentation) effect” that occurs when 
the beam has nonzero initial conditions. Had we included an initial 
condition             and            , we would have introduced two 
additional terms into the ensemble response, which do not 
participate in the dynamic interaction of the beam particles and are 
not interesting for our purposes here. In this decoherence effect, 
individual particles continue to execute oscillations of constant 
amplitude, but the total beam response        decreases with time 

  As mentioned above, work is continuously being done on the 
system. However, the amplitude of   , as given before, does not 
increase with time. Where did the energy go?  

  To investigate this, let us identify the energy of a particle as the 
square of its oscillation amplitude. The amplitude of the particle i is 
given by the slowly varying envelope 

€ 

xi 0( ) = xi, 0

€ 

˙ x i 0( ) = ˙ x i, 0

€ 

x 

€ 

x 

€ 

Αx,i =
f

ωx0 ωc −ωx,i( )
sin

ωc −ωx,i( ) t
2

 

 
 

 

 
 
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PHYSICAL ORIGIN OF LANDAU DAMPING (6/11) 

17 

  This leads to a total oscillation energy of (with N the total number of 
particles in the beam) 

€ 

Εx = N ρx ωx,i( ) dωx,i
−∞

+∞

∫ f
ωx0 ωc −ωx,i( )

sin
ωc −ωx,i( ) t

2
 

 
 

 

 
 

 
 
 

  

 
 
 

  

2

=
N f 2

ωx0
2 ρx u +ωc( ) du

−∞

+∞

∫
sin2 u t /2( )

u2

€ 

lim
t→+∞

sin2 u t /2( )
u2

=
π t
2
δ u( ) => 

€ 

Εx =
π N f 2

2ωx0
2 ρx ωc( ) t

=> The system therefore absorbs energy from the driving force 
indefinitely while holding the ensemble beam response within 
bounds 
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PHYSICAL ORIGIN OF LANDAU DAMPING (7/11) 

18 

  The stored energy is incoherent in the sense that the energy is 
contained in the individual particles, but it is not to be regarded as 
heat in the system. This is because the stored energy is not 
distributed more or less uniformly in all particles, but is selectively 
stored in particles with continuously narrowing range of frequencies 
around the driving frequency 

  Observe 2 particles            and              . At the beginning, they 
oscillate “coherently” (same amplitude and same phase). However, 
after a while the particle with        , being resonantly driven, 
continues to increase in amplitude as time increases, whereas the 
other particle with                 realizes that its frequency is not the 
same as the driving one and the “beating” phenomenon is observed 
for this particle  

€ 

ωx, i =ωc

€ 

ωx, i ≠ ωc

€ 

ωx, i =ωc

€ 

ωx, i ≠ ωc
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PHYSICAL ORIGIN OF LANDAU DAMPING (8/11) 

19 

€ 

ωx, i =ωc

€ 

ωx, i ≠ ωc
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PHYSICAL ORIGIN OF LANDAU DAMPING (9/11) 

20 

  The particle with                         is considered off-coherence when 

                                    is maximum, i.e. after the time approximately  

                        , and at time              , the particle returns all its energy 

back to the driving force in a beating process. One can also say that, 

if one considers the phenomenon for a time t, only the particles with 

                    still oscillate coherently. All the others are “beating”. It is 

mainly those particles with                      that contribute to the 

response, and those particles with                      that contribute to the 

                 response. Since the number of particles with          

decreases with time as       while their amplitude increases as       , 

the net                 contribution to       is constant with time 

€ 

ωx, i ≠ ωc

€ 

sin ωc −ωx, i( ) t / 2[ ]

€ 

t = π / ωc −ωx, i

€ 

2t 

€ 

ωc −ωx, i < π / t

€ 

ωc −ωx, i < π / t

€ 

sin ωc t( )

€ 

ωc −ωx, i > π / t

€ 

cos ωc t( )

€ 

ωc −ωx, i < π / t

€ 

1/ t

€ 

t

€ 

sin ωc t( )

€ 

x 
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PHYSICAL ORIGIN OF LANDAU DAMPING (10/11) 

21 

  A mathematical trick bypasses most of these subtleties and makes 

the analysis much more concise 

  Using complex notation, the driving force is written         and the 

single-particle motion gives the total beam response 

€ 

f ejωc t

€ 

x = − f e jω c t

2ωx0

1
ωc − ωx,i−∞

+∞

∫ ρx ωx,i( ) dωx,i

  If one considers the integration along the real axis of the                 , 

but moves the pole at                  down by an infinitesimal amount 

€ 

ωx, i − plane

€ 

ωx, i =ωc

€ 

ωc → ωc − jε
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PHYSICAL ORIGIN OF LANDAU DAMPING (11/11) 

22 

=> 

€ 

x = f e jω c t

2ωx0

- P.V.
ρx ωx,i( )
ωc − ωx,i

dωx,i
−∞

+∞

∫ − jπ ρx ωc( )
 

 
 
 

 

 
 
 

  Introducing an infinitesimally small imaginary part to the coherent 
frequency has the physical meaning of considering a force that has 
a time dependence of                       , i.e. a force that grows with time 
at an infinitesimal rate. This means the driving force has not been in 
existence since , which has the same effect as introducing explicit 
initial conditions as far as removing the singularity is concerned 

  Note that the term in brackets is called the “Beam Transfer 
function”, i.e. it is the beam response to a sinusoidal driving force (it 
is in fact the 0-intensity limit of the BTF). It can be determined 
experimentally by measuring the phase and amplitude of the beam 
response. The interest of the BTF is that it contains information 
about the beam and the accelerator => Can be used to measure the 
beam frequency spectrum and the accelerator impedance   

€ 

ejωc t+ ε t
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (1/9) 

  Results obtained in the previous section, when applied to circular 
accelerators, lead to Landau damping of collective instabilities 

  Reminder: In the case of a coasting-beam, the following equation has 
to be solved 

23 

€ 

ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫
 

 
  

 

 
  

−1

= Ux − jVx

Contains information about the 
beam intensity and impedance 

Contains information about the 
beam frequency spectrum 

€ 

Δωc =ωc −ωx0 =Ux − jVx

=
I c j Zx ω( )

4 π Qx0 Et / e( )
Stability  

€ 

Vx ≤ 0€ 

QcΩi =ωc =QcΩ0
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (2/9) 

  Consider the real parameter                 (stability limit) and observes 
the locus traced out in the complex                            as     
is scanned form             to            

24 

€ 

ωc − ωx0

€ 

D − plane

€ 

ωc − ωx0

€ 

−∞

€ 

+∞

€ 

D =
ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫
 

 
  

 

 
  

−1

  This locus defines a “stability boundary diagram”. The r.h.s (complex 
frequency shift in the absence of frequency spread), is then plotted 
as a single point. If this point lies on the boundary, it means the 
solution of the dispersion equation is real, and it is such that the 
beam is just at the edge of instability. If it lies on the inside of the 
stability diagram (the side which contains the origin of 
the                      ), the beam is stable. If it lies on the outside of it, the 
beam is unstable 

€ 

D − plane

Note that the low-intensity  
BTF is equal to 1 / D 
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (3/9) 

  The dispersion relation is particularly simple for the Lorentzian 
spectrum. In this case the distribution function is written 

25 

€ 

ρx ωx,i( ) =
δωx

π
ωx,i − ωx0( ) 2 + δωx

2[ ]
−1

HWHM = Half Width at Half 
Maximum 
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (4/9) 

  The corresponding dispersion integral is given by 

26 

€ 

ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫ =
1

ωc − ωx0 − jδωx

=> 

€ 

ωc = ωx0 + Ux + j δωx − Vx( )

Stability  

€ 

δωx ≥ Vx
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (5/9) 

  The larger the frequency spread, the stronger the Landau damping. 
Also, for a given spread, the effectiveness of Landau damping is 
different for different spectral shapes. The Lorentzian spectrum, 
having a long distribution tail, is very effective; spectra with cutoff 
tails tend to be less effective, while the spectrum, of course, is not 
effective at all. Sharp edges in a spectral shape are reflected in sharp 
edges in the stability boundary 

  The Lorentzian distribution describes the stabilizing mechanism of 
Landau damping in a simple way, but neglects an important point. 
The real part of the complex mode frequency shift is not taken into 
account in the stability criterion because of its infinite tails. However, 
realistic distributions have finite tails and for distributions without 
important tails, Landau damping is prevented when the shift is larger 
than the frequency spread. This is explained by the large detuning 
which shifts the coherent frequency to a value outside the spectrum . 
This kills Landau damping since they are no individual particles 
which can couple to the coherent response   

27 
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (6/9) 

  For practical accelerator operations, there may be approximate 
information on the value of the frequency spread, but not enough 
detailed information on the shape of the frequency spectrum; or 
there may be only a need of a rough estimate of whether the 
collective instability is Landau damped. For those purposes, a 
simplified stability criterion derived using the elliptical spectrum is 
introduced, knowing that Lorentzian and elliptical spectra are limiting 
cases and that realistic distributions are probably between them   

28 

  The dispersion relation in the case of an elliptical distribution is 
given by 

€ 

ρx ωx,i( ) =
2

π Δωx
2 Δωx

2 − ωx,i − ωx0( ) 2

0

 
 
 

  

€ 

, ωx,i − ωx0 ≤ Δωx

, ωx,i − ωx0 > Δωx
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (7/9) 

29 

                     is the  
Half Width at the Bottom  

of the distribution 

€ 

Δωx

  The corresponding dispersion integral is given by 

€ 

ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫ = 2 ωc − ωx0 − j Δωx
2 − ωc − ωx0( ) 2 

  
 
  

−1
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (8/9) 

30 

€ 

ωc =ωx0 +Ux

Δωx
2 + 4 Ux

2 +Vx
2( )

4 Ux
2 +Vx

2( )
+ jVx

Δωx
2 − 4 Ux

2 +Vx
2( )

4 Ux
2 +Vx

2( )
  This leads to 

Stability  

€ 

Δωx ≥ 2 Ux − jVx
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LANDAU DAMPING OF COLLECTIVE INSTABILITIES (9/9) 

  A fair comparison of two spectral shapes can be made when they 
have the same Half Width at Half Height (HWHH): 

  For the Lorentzian spectrum: 

  For the elliptical spectrum: 

31 

€ 

ΔωHWHH
x = δωx

€ 

ΔωHWHH
x ≥ Vx

€ 

ΔωHWHH
x = 3 /2( ) Δωx

€ 

ΔωHWHH
x ≥ 3 Ux − jVx

  Although the exact stability condition depends on details of the 
spectrum, the last equation is an important result which takes into 
account both contributions of the real and imaginary parts of the 
coherent tune shift => It says that if the real mode frequency shift or 
growth rate, calculated without Landau damping, is larger than  

 Landau damping most likely will not rescue the beam from instability  

€ 

ΔωHWHH
x / 3
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (1/17) 

  The origins of the frequency spread that leads to Landau damping 
have been specified at the beginning but have not been taken into 
account till now. The case where the frequency spread comes from 
the longitudinal momentum spread of the beam is straightforward 
(for a coasting beam), because the longitudinal momentum is a 
constant, which just affects the coefficients in the equations of 
motion of the transverse oscillations, and hence their frequencies. It 
can be dealt with the same method as in the previous sections. The 
same result applies also if one considers a tune spread that is due to 
a non-linearity in the other plane 

  However, this result is no longer valid if the non-linearity is in the 
plane of coherent motion 

  In this case, the steady-state is more involved because the coherent 
motion is then a small addition to the large incoherent amplitudes 
that make the frequency spread, and it is inconsistent to assume that 
it can be treated as a linear superposition => One needs to consider 
“second order” non-linear terms 

32 

€ 

Qx, i ˆ y i( )

€ 

Qx, i ˆ x i( )
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  Let us thus proceed to include the frequency spread due to a non-
linearity in the external focusing, in the plane of coherent motion 
only 

  One will show that the steady-state response of 

€ 

˙ ̇ x i +ωx,i
2 ˆ x i( ) xi = 2ωx0 −Ux + jVx( ) x 

 is more involved than the simple-minded response found before 

€ 

xi = 2ωx0 −Ux + jVx( ) x 
ωx,i
2 − ω − nx Ω0( ) 2

 

 
 
 

 

 
 
 

 and is given by (in 1st order in                                                ) 

€ 

Xi = 2ωx0 −Ux + jVx( ) X 1− Kx

2
 

 
 

 

 
 

1
ωx,i

2 ˆ x i( ) − ω − nx Ω0( ) 2 −
Kx

2
ωx,i

2 ˆ x i( ) + ω − nx Ω0( ) 2

ωx,i
2 ˆ x i( ) − ω − nx Ω0( ) 2[ ]

2

 

 

 
 
 

 

 

 
 
 

€ 

Kx = dωx,i /dˆ x i( ) / ωx,i / ˆ x i( ) <<1

LANDAU DAMPING BY EXTERNAL NONLINEARITY (2/17) 
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  To do so let’s consider the following case (slightly different notations 
compared to the previous slides) of free oscillation 

€ 

˙ ̇ x + ν 0
2 x + F x( ) = 0

LANDAU DAMPING BY EXTERNAL NONLINEARITY (3/17) 

Represents the nonlinear part 
of the restoring force 

€ 

F 0( ) = ′ F 0( ) = 0

=> (see also the treatment of space-charge nonlinearities) 

€ 

x = A cos ν A( ) t +ψ[ ] + higher harmonics

  As we need to know the response of a large-amplitude particle to a 
small external perturbation, we will try and solve  

€ 

˙ ̇ x + ν 0
2 x + F x( ) = B e jω t
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (4/17) 

€ 

˙ ̇ x 0 + ν 0
2 x0 + F x0( ) = 0

€ 

x1 = x − x0

with 

  We assume B small and drops terms higher than 1st order in it. The 
choice of the appropriate x0 avoids B-independent part of x1, which 
will be proportional to B 

  Let’s consider 1st the effect of a perturbation in the form of an 
impulse 

€ 

˙ ̇ x + ν 0
2 x + F x( ) = B δ t − t0( )

€ 

x = x0 = A cos ν t +ψ[ ]

€ 

ν A( )

For t < t0 
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (5/17) 

€ 

x = A + δA( ) cos ν A + δA( ) t +ψ + δψ[ ]For t > t0 

Small constants to be 
determined (near t0) 

€ 

x t = t0
+( ) − x t = t0

−( ) = 0

€ 

˙ x t = t0
+( ) − ˙ x t = t0

−( ) = B

  Let’s call 

€ 

K =
A dν
ν dA
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (6/17) 

  Let us 1st show that (as it will be used to determine        ) 

€ 

cos ν A + δA( ) t +ψ[ ] = cos ν A( ) t +ψ[ ] − δν t sin ν A( ) t +ψ[ ]

€ 

d
dA

cos ν A( ) t +ψ[ ]{ } = −
dν
dA

t sin ν A( ) t +ψ[ ]

And, by definition of a derivative 

€ 

′ f x0( ) = lim
x → x0

f x( ) − x0( )
x − x0

= lim
h → 0

f x0 + h( ) − f x0( )
h

€ 

˙ x 
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (7/17) 

=> 

€ 

d
dA

cos ν A( ) t +ψ[ ]{ } =
cos ν A + δA( ) t +ψ[ ] − cos ν A( ) t +ψ[ ]

δA

  For t > t0 

€ 

x = A + δA( ) cos ν A + δA( ) t +ψ + δψ[ ]

= A + δA( )
cos ν t +ψ[ ] − δψ sin ν t +ψ[ ]
− δν t sin ν t +ψ[ ] − δν t δψ cos ν t +ψ[ ]

 
 
 

  

 
 
 

  

€ 

˙ x = ˙ x 0 − δA ν 1+ K( ) sin ν t +ψ( )− δA ν 2 t K cos ν t +ψ( )
− δψ A ν cos ν t +ψ( )
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (8/17) 

  Applying the 2 conditions near t0 yields 

€ 

A + δA( ) cos ν A + δA( ) t0 +ψ + δψ[ ] = A cos ν A( ) t0 +ψ[ ]

€ 

B = − δA ν 1+ K( ) sin ν t0 +ψ( )− δA ν 2 t K cos ν t0 +ψ( )
− δψ A ν cos ν t0 +ψ( )

  The solutions are 

€ 

δψ = B K ν t0 sinφ0 − cosφ0
A ν 1+ K sin2 φ0( )

€ 

δA = − B sinφ0
ν 1+ K sin2 φ0( )

€ 

φ0 =ν t0 +ψ

€ 

φ =ν t +ψ
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (9/17) 

  Therefore, 

€ 

x1
δ = 0For t < t0 

For t > t0 (averaging over ψ) 

€ 

x1
δ =

B
ν
1− K

2
 

 
 

 

 
 sin t − t0( ) ν[ ] +

BK
2

t − t0( ) cos t − t0( ) ν[ ]

  Finally, to solve the case with simple-harmonic perturbation, we 
must multiply by              and integrate dt0 from - ∞ to t  

€ 

e jω t0

€ 

x1 = x1
δ e jω t0 dt0

−∞

t

∫
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (10/17) 

=> This yields, after having assumed a negative imaginary 
part of ω (i.e. assuming an instability) which makes the 
oscillating terms for t -> - ∞ converge to 0 

€ 

x1 = 1− K
2

 

 
 

 

 
 
B e jω t

ν 2 −ω 2 −
K
2

ν 2 +ω 2( ) B e jω t

ν 2 −ω 2( )2

When K = 0, the usual response is recovered 

€ 

x1 K = 0( ) =
B e jω t

ν 2 −ω 2
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (11/17) 

  UNIFORM-DENSITY CASE 

€ 

x0 = A cos ν t +ψ[ ]

€ 

˙ x 0 = −ν A cos ν t +ψ[ ]

=> The ellipse in phase space has the area 

€ 

π A2 ν

€ 

d π A2 ν( ) = π 2 A δA ν + A2 δν( )

= 2π 1+
K
2

 

 
 

 

 
 ν A dA
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (12/17) 

=> The response factor averaged over the uniformly filled area is 

€ 

Ru =
x1

B e jω t =
1

π Am
2 νm

x1
B e jω t d π A2 ν( )

0

Am

∫

=>  

€ 

Ru =
1

Am
2 νm

2 A ν
ν 2 −ω 2 −

K
2
ν ν 2 +ω 2( )
ν 2 −ω 2( )2

 
 
 

  

 
 
 

  
dA

0

Am

∫

Furthermore, it can be shown that 

€ 

2 A ν
ν 2 −ω 2 −

K
2
ν ν 2 +ω 2( )
ν 2 −ω 2( )2

 
 
 

  

 
 
 

  
=
d
dA

ν A2

ν 2 −ω 2

 

 
 

 

 
 
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (13/17) 

=>  

€ 

Ru =
1

Am
2 νm

d
dA

ν A2

ν 2 −ω 2

 

 
 

 

 
 dA

0

Am

∫ =
1

ν 2 −ω 2

Therefore: 

•  The uniformly filled region behaves as though all the particles 
had a resonant frequency corresponding to the one of the 
greatest amplitude 

•  Such a system has no Landau damping  
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (14/17) 

  NON-UNIFORM DENSITY 

€ 

N = ρ A( ) d π A2 ν( )
0

∞

∫
Number of particles 

=> The response factor averaged over the distribution is 

€ 

Rnu =
x1

B e jω t =
1
N

x1
B e jω t ρ A( ) d π A2 ν( )

0

∞

∫

=
1
N

ν
ν 2 −ω 2 −

K
2
ν ν 2 +ω 2( )
ν 2 −ω 2( )2

 
 
 

  

 
 
 

  
ρ A( ) 2π A dA

0

∞

∫
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (15/17) 

Integrating this by parts yields 

€ 

Rnu =
1
N

u v[ ]0
∞
−
1
N

′ u v dA
0

∞

∫

with 

€ 

A ν
ν 2 −ω 2 −

K
2
ν ν 2 +ω 2( )
ν 2 −ω 2( )2

 

 

 
 

 

 

 
 

= ′ v 

€ 

2π ρ A( ) = u

€ 

v =
ν A2

2 ν 2 −ω 2( )

€ 

′ u = 2π ′ ρ A( )

=>  

€ 

Rnu = −
π
N

′ ρ A( ) ν A2

ν 2 −ω 2 dA
0

∞

∫
Therefore: It is the derivative of the distribution function which 
matters and not the distribution itself => Regions of uniform density 
contribute nothing! The previous result is recovered 
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (16/17) 

  Finally, coming back to our initial problem, i.e. to solve 

€ 

˙ ̇ x i +ωx,i
2 ˆ x i( ) xi = 2ωx0 −Ux + jVx( ) x 

 The solution can be written 

€ 

−
π
N

′ ρ x ˆ x i( )
ωx,i ˆ x i( ) ˆ x i

2

ωx,i
2 ˆ x i( ) − ω − nx Ωi( ) 2

0

+∞

∫ dˆ x i
 

 
 
 

 

 
 
 

−1

= 2ωx0 −Ux + jVx( )

or, using another distribution function (which will also be used later) 

€ 

fx 0 ˆ x i( ) ˆ x i dˆ x i
ˆ x i = 0

ˆ x i = +∞

∫ =
1

2π =>  

€ 

∂ fx 0 ˆ x i( )
∂ ˆ x i

ˆ x i
2 dˆ x i

ˆ x i = 0

ˆ x i = +∞

∫ = −
1
π
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LANDAU DAMPING BY EXTERNAL NONLINEARITY (17/17) 

One finally obtains 

€ 

− π
dfx0 ˆ x i( )

dˆ x i
ˆ x i

2

ωc −ωx,i ˆ x i( )0

+∞

∫ dˆ x i

 

 

 
 
 
 

 

 

 
 
 
 

−1

= Ux − j Vx

This result is also found using the Vlasov formalism (which 
can also be used for coasting beams) as we will see for 

bunches beams 
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GENERAL DISPERSION RELATION TO BE SOLVED (1/7) 

49 

  If in addition, one considers also a momentum spread and a 
spread from nonlinearity of the second transverse planes (as it is 
the case for instance when octupoles are used), the dispersion 
equation writes  

€ 

ˆ x i = 0

ˆ x i = +∞

∫
ˆ y i = 0

ˆ y i = +∞

∫
−2π 2 dfx0 ˆ x i( )

dˆ x i
ˆ x i

2 fy 0 ˆ y i( ) ˆ y i g0 pi( )

ω − nx + Qx,i ˆ x i, ˆ y i, pi( )[ ] Ωi pi( )
dˆ x i dˆ y i dpi

pi = 0

pi = +∞

∫

 

 

 
 
 
 

 

 

 
 
 
 

−1

= Ux − j Vx

€ 

fy 0 ˆ y i( ) ˆ y i dˆ y i
ˆ y i = 0

ˆ y i = +∞

∫ =
1

2π

€ 

g0 pi( ) d
0

+∞

∫ pi =1

€ 

ω − nx + Qx,i ˆ x i, ˆ y i, pi( )[ ] Ωi pi( ) =ωc −ωx 0 + nx + Qx0( )Ω0 −ωξ x[ ] ˙ τ i − ˙ ϕ x,i ˆ x i, ˆ y i( )

=ω − nx + Qx 0( )Ω0 + nx + Qx 0( )Ω0 −ωξ x[ ] ˙ τ i − ˙ ϕ x,i ˆ x i, ˆ y i( )

Betatron spectrum Incoherent frequency spread 
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GENERAL DISPERSION RELATION TO BE SOLVED (2/7) 

50 

  Consider 1st the case with no nonlinearity, i.e. only a momentum 
spread (with a parabolic distribution) 

€ 

2π
Ω0

g0 ˙ τ i( )

ωc −ωx0 − Δω p
˙ τ i
˙ τ L

d ˙ τ i
˙ τ i = − ˙ τ L

˙ τ i = + ˙ τ L

∫

 

 

 
 
  

 

 

 
 
  

−1

= Ux − j Vx

€ 

g0 ˙ τ i( ) d
˙ τ i = − ˙ τ L

˙ τ i = + ˙ τ L

∫ ˙ τ i =
Ω0

2π

€ 

g0 ˙ τ i( ) =
3Ω0

8π ˙ τ L
1− ˙ τ i

˙ τ L

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

€ 

ω − nx + Qx,i ˆ x i, ˆ y i, pi( )[ ] Ωi pi( ) =ωc −ωx 0 − Δω p
˙ τ i
˙ τ L

€ 

Δω p = − nx + Qx0( )Ω0 −ωξ x[ ] ˙ τ L
€ 

˙ τ L = η
Δp
p

 

 
 

 

 
 
L

Positive spread (as 
we look at negative 

frequencies) 

The chromatic 
frequency has to be 
> 0 to avoid loss of 

spread  

Note that even at 
transition there is a 
spread through the 

chromaticity 

€ 

ωξ x
= Qx0Ω0

ξx
η
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=>  

€ 

1− x 2

x1 − x
dx

−1

+1

∫
 

 
  

 

 
  

−1

= Ux − j Vx( ) × 3
4 Δω p

€ 

x =
˙ τ i
˙ τ L

€ 

x1 =
ωc −ωx0

Δω p

=
Δωc

Δω p

 Looking at the stability diagram of the next slide a stability 
criterion (circle approximation) can be  obtained 

€ 

Ux − j Vx ×
3

4 Δω p

≤ 0.3 =>  

€ 

Δω p ≥ 2.5 Ux − j Vx

Stability criterion we found 
before with an elliptical spectrum 

(with 2 instead of 2.5) 
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!1.0 !0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

3Ux!"4"Ωp#

3
V
x
!"4"

Ω
p
#

€ 

− 0.1
€ 

− 0.3

€ 

− 0.2

€ 

− 0.4

€ 

− 0.5

€ 

− 0.6

€ 

− 0.7

€ 

− 0.8

€ 

− 0.9

€ 

−1.0

€ 

τ = −
1

Im x1( ) Δω p
€ 

Im x1( ) = 0
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  Consider now the case with a nonlinearity only in the horizontal 
plane (i.e. in the plane of coherent motion), and no momentum 
spread 

€ 

−π
dfx0 ˆ x i( )

dˆ x i
ˆ x i

2

ωc −ωx 0 − Δωnl
ˆ x i

2

ˆ x L
2

dˆ x i
ˆ x i = 0

ˆ x L

∫

 

 

 
 
 
 

 

 

 
 
 
 

−1

= Ux − j Vx

€ 

fx 0 ˆ x i( ) =
2

π ˆ x L
2 1−

ˆ x i
ˆ x L

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

€ 

ω − nx + Qx,i ˆ x i, ˆ y i, pi( )[ ] Ωi pi( ) =ωc −ωx 0 − ˙ ϕ x,i ˆ x i, ˆ y i( )

€ 

˙ ϕ x,i ˆ x i, ˆ y i( )=
∂Qx,i

∂ ˆ x i
2

ˆ x i
2 Ω0

= Δωnl
ˆ x i

2

ˆ x L
2
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=>  

€ 

x
x1 − x

dx
0

1

∫
 

 
 

 

 
 

−1

= Ux − j Vx( ) × 2
Δωnl

€ 

x =
ˆ x i
ˆ x L

 

 
 

 

 
 

2

€ 

x1 =
ωc −ωx0

Δωnl

=
Δωc

Δωnl

 Looking at the stability diagram of the next slide a stability 
criterion (circle approximation, knowing that this stability 
diagram exhibits pathologies linked to the sharp edges of the 
parabolic distribution) can be  obtained 

€ 

Ux − j Vx ×
2

Δωnl

≤ 0.5 =>  

€ 

Δωnl ≥ 4 Ux − j Vx

Stability criterion we found before with an elliptical spectrum  
(with 2 instead of 4) => Usually a fair comparison is done by 

comparing the Half Width at Half Maximum  
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!2 !1 0 1 2
0.0

0.5

1.0

1.5

2.0

2Ux!"Ωnl

2
V
x
!"Ω n

l

€ 

− 0.1
€ 

− 0.3

€ 

− 0.2
€ 

− 0.4

€ 

− 0.5

€ 

− 0.6

€ 

− 0.7

€ 

− 0.8

€ 

− 0.9

€ 

Im x1( ) = 0
This behaviour is due to the 
sharp edges of the parabolic 

distribution 
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56 

  The Landau damping mechanism heavily depends on the tails of 
the distribution. To look at it let’s consider the following case, 
neglecting the momentum spread (and incoherent tune shift), but 
treating “correctly” the two-dimensional betatron tune spread 
introduced by (Landau) octupoles 

 => The dispersion relation to be solved (for a round beam) is  

€ 

1= − ΔQcoh
x dJx

Jx = 0

+∞

∫ dJy
Jy = 0

+∞

∫
Jx
∂f Jx,Jy( )

∂Jx
Qc −Qx Jx,Jy( ) − m Qs

  Here, the action-angle variables are used   

€ 

qx,y = 2 Jx,y cosϑ x,y

€ 

px,y = 2 Jx,y sinϑ x,y

€ 

Jx,y =
qx,y
2 + px,y

2

2

€ 

Hx,y
0 =ω Jx,y

€ 

< Jx,y > = ε

€ 

σ x,y = ε Normalised rms beam sizes 

= 0 for coasting beams 
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  In the presence of octupoles, the transverse tunes are given by  

€ 

Qx Jx,Jy( ) = Q0 + a0 Jx + b0 Jy

€ 

a0 =
3
8 π

βx
2 O3

Bρ
ds∫

€ 

b0 = −
3
8 π

2βx βy
O3

Bρ
ds∫

€ 

K3 [m
−4 ] =

1
Bρ

×
∂3By

∂x 3
= 6O3

€ 

By =O3 x 3 −3x y 2( )



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /114 
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  Consider the following (nth order) distribution 

€ 

f Jx,Jy( ) = a 1−
Jx + Jy
b

 

 
 

 

 
 

n

€ 

dJx
Jx = 0

b

∫ dJy
Jy = 0

b− Jx

∫ f Jx,Jy( ) =
ab2

n +1( ) n + 2( )
=1€ 

Jx + Jy ≤ Jmax = b

€ 

< Jx > = Jx dJx
Jx = 0

b

∫ dJy
Jy = 0

b− Jx

∫ f Jx,Jy( ) =
ab3

n +1( ) n + 2( ) n + 3( )
= ε

=>  

€ 

b = n + 3( ) ε

€ 

a =
n +1( ) n + 2( )

b2
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  The horizontal profile is given by 

€ 

g x( ) =
ab

2π n+1( )
1− x 2 + px

2

2b
 

 
 

 

 
 

− 2b− x 2

2b− x 2

∫
n +1

dpx

=
2 n+2( ) 2 n +1 n+1( ) ![ ]

2

π 2b 2n+ 3( ) !
1− x 2

2b
 

 
 

 

 
 

n +
3
2

€ 

g x( ) =
1
2π

− 2b− x 2

2b− x 2

∫ dpx f Jx( )

€ 

Jx =
x 2 + px

2

2

€ 

f Jx( ) =
0

b − Jx

∫ dJy f Jx , Jy( ) =
a b
n + 1

1− Jx
b

 

 
 

 

 
 
n +1

=>  



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /114 
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Therefore, the profile extends up to 

€ 

2b

=> In the case of a beam profile extending up to 6 σ (it is the settings 
for the LHC collimators), one should have 

€ 

2b = 6σ => 

€ 

n =15

  If n = 2, it means that horizontal profile extends up to 3.2 σ  
  In the case of a Gaussian distribution, one has 

€ 

f Jx,Jy( ) =
1
ε2
e
−

Jx + Jy( )
ε

€ 

g x( ) =
1
2π σ

e
−
x 2

2σ 2
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€ 

f Jx,Jy( ) =
n+1( ) n+2( )
n+ 3( ) 2 ε 2

1−
Jx + Jy
n+ 3( ) ε

 

 
 

 

 
 

n

  Note that the nth order distribution function tends to the Gaussian 
distribution function, when n tends to infinity. This can be easily 
found by taking the logarithm and expanding it (                              )  

€ 

log f Jx,Jy( )[ ] = log
n+1( ) n+2( )
n+ 3( ) 2

 

 
 
 

 

 
 
 
− log ε 2( ) + n log 1−

Jx + Jy
n+ 3( ) ε

 

 
 

 

 
 

€ 

→ 0 when n→∞

€ 

Log 1− x( ) ≈ − x

€ 

→−
Jx + Jy
ε

when n→∞
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  Stability diagram 

€ 

ΔQcoh
x = −

a0
n ab

In
−1 c,q( )

€ 

In c,q( ) = dJx
Jx = 0

1

∫ dJy
Jy = 0

1− Jx

∫
Jx 1−Jx −Jy( )

n−1

q + Jx +c Jy

€ 

q =
Qc −Q0 −mQs

−ba0

€ 

c =
b0
a0

•  For n = 2, this can be solved analytically and one obtains  

€ 

I2 c,q( ) = −

c + q( ) 3 Log 1 + q[ ] − c + q( ) 3 Log c + q[ ] + c − 1( )

c c + 2cq + 2c − 1( ) q 2[ ]
+ c − 1( ) q 2 3c + q + 2cq( ) Log q[ ] − Log 1 + q[ ]( )

 
 
 

  

 
 
 

  

 

 
  

 
 
 

 

 
  

 
 
 

/ 6 c − 1( ) 2 c 2[ ]

m = 0 for coasting beams 
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•  For the Gaussian distribution, also 

€ 

ΔQcoh
x = − a0ε K

−1 c, p( )

€ 

K c, p( ) = dJx
Jx = 0

∞

∫ dJy
Jy = 0

∞

∫ Jx e
− Jx + Jy( )

p + Jx +c Jy

€ 

p =
Qc −Q0 −mQs

−a0ε

€ 

K c, p( ) =
1−c− p +c −c p( ) ep E1 p( ) + c ep / c E1 p /c( )

1−c( ) 2
€ 

E1 z( ) =
e − t

tt= z

t=∞

∫ dt

•  For the 15th order distribution, it was solved numerically 

m = 0 for coasting beams 
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Gaussian 

2nd order 

15th order 

Stability diagrams for 
the LHC at top energy 
( w i t h m a x i m u m 
available octupole 
strength) 

For > 0 and < 0 
detuning       

€ 

ε = 0.5 nm

€ 

|a0 |= 270440

€ 

c = - 0.65

€ 

a0
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  Distribution with more populated tails than the Gaussian (this 
case may apply in reality in proton machines, where several 
diffusive mechanisms can take place) 

€ 

f Jx,Jy( ) = a 1−
Jx + Jy
b

 

 
 

 

 
 

n

+ d 1−
Jx + Jy
b

 

 
 

 

 
 

p

=> Here we impose that the beam profile extends up to 6 σ (it is the 
settings for the LHC collimators) 

€ 

dJx
Jx = 0

b

∫ dJy
Jy = 0

b− Jx

∫ f Jx,Jy( ) =
ab2

n +1( ) n + 2( )
+

db2

p +1( ) p + 2( )
=1

€ 

Jx dJx
Jx = 0

b

∫ dJy
Jy = 0

b− Jx

∫ f Jx,Jy( ) =
ab3

n +1( ) n + 2( ) n + 3( )
+

db3

p +1( ) p + 2( ) p + 3( )
= ε
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=> 

€ 

a =
n +1( ) n + 2( ) n + 3( ) 15 − p( )

18 b2 n − p( )

€ 

d =
p +1( ) p + 2( ) p + 3( ) n −15( )

18 b2 n − p( )

n must be > 15  
and p < 15 (to guarantee a 

positive density) 

€ 

g x( ) =
1

9π n − p( ) 2b

n+2( ) n+ 3( ) 15− p( ) 2 n +1 n+1( ) ![ ]
2

2n+ 3( ) !
1− x 2

2b
 

 
 

 

 
 

n +
3
2

+
p+2( ) p+ 3( ) n−15( ) 2 p +1 p+1( ) ![ ]

2

2 p+ 3( ) !
1− x 2

2b
 

 
 

 

 
 

p +
3
2

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 
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=> Let’s consider as an example the case n = 16 and p = 2 

Case with the most 
populated tails 
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•  The dispersion relation writes 

€ 

ΔQcoh
x = −

a0 / b
n a In c,q( ) + pd Ip c,q( )
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73 

  If the nonlinear part of space charge is also taken into account the 
situation is even more involved and the dispersion relation is 
given by (neglecting the momentum spread but treating 
“correctly” the two-dimensional betatron tune spread introduced 
by Landau octupoles) 

€ 

1= − dJx
Jx = 0

+∞

∫ dJy
Jy = 0

+∞

∫
Jx
∂f Jx,Jy( )

∂Jx
ΔQcoh

x − ΔQincoh
x Jx,Jy( )[ ]

Qc −Qx Jx,Jy( ) − mQs

€ 

f Jx,Jy( ) =
12
Jmax
2 1−

Jx + Jy
Jmax

 

 
 

 

 
 

2

€ 

Jx + Jy ≤ Jmax = 5σ 2

m = 0 for coasting beams 
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€ 

Qx Jx,Jy( ) = Qx0 Jx,Jy( ) + ΔQincoh
x Jx,Jy( )

€ 

Qx0 Jx,Jy( ) = Qx00 + a Jx + b Jy

€ 

a =
3
8 π

βx
2 O3

Bρ
ds∫

€ 

b = −
3
8 π

2βx βy
O3

Bρ
ds∫

  The computation of the incoherent (nonlinear) tune shift has to be 
self-consistent (with the assumed distribution function) and it 
corresponds to the case computed in the SPACE CHARGE course 

€ 

dpx
px

∫ dpy
py

∫ f Jx,Jy( ) =
8 π
5σ 2 1− x 2 + y 2

10σ 2

 

 
 

 

 
 

3
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with 

=> Reminder: 

€ 

Jmax = 5σ 2
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  Knowing the expression of the non-linear space-charge tune shift, 
the (exact) dispersion relation can be obtained 

  A reasonable approximation of the self-consistent non-linear 
space-charge tune shift is given by taking into account only the 
linear terms in the betatron action variables (adapting the 
coefficients!) => The dispersion relation is solved in this case 

€ 

ΔQincoh
x Jx,Jy( ) = Δ 0 + Δ a Jx + Δ b Jy

€ 

ΔQcoh
x = Δ 0 +

1
K1 c1, q( )

×
S1
24

+ Jmax Δ a K2 c1, q( ) + Jmax Δ b K3 c1, q( )
 

  
 

  

€ 

a1 = a + Δ a

€ 

b1 = b + Δ b

€ 

c1 =
b1
a1

€ 

S1 = − a1 Jmax
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€ 

K1 c1,q( ) = −
1

6 c1
2 c1 −1( ) 2

×

c1 + q( ) 3 log 1+ q( ) − c1 + q( ) 3 log c1 + q( )

+ c1 −1( ) c1 c1 + 2c1q+ 2c1 − 1( ) q2[ ]{ }
+ c1 −1( ) q2 3c1 + q + 2 c1q( ) log q( ) − log 1+ q( )[ ]

 

 
  

 
 
 

 

 
  

 
 
 

€ 

K3 c1,q( ) = −
1

24 c1
3 c1 −1( ) 3

×

−1+ c1( ) c1 c1
2 1+ c1( ) + 6 c1

2 q + 3 c1 1+ c1( ) q2 + 2 1+ −1+ c1( ) c1[ ] q3{ }
+2 c1 + q( ) 3 c1 − q + 2 c1 q( ) log 1+ q( ) − 2 c1 + q( ) 3 c1 − q + 2 c1q( ) log c1 + q( )
+2 −1+ c1( ) 3 q 3 q + c1 2 + q( )[ ] log q( ) − log 1+ q( )[ ]

 

 
 
 

 
 
 

 

 
 
 

 
 
 

€ 

K2 c1,q( ) = −
1

24 c1
2 c1 −1( ) 3

×

c1 −1( ) c1
c1 − 3 c1

2 − 2 c1 c1 + 2( ) q + c1 −11+ 5 c1( ) q2

+ 2 1+ c1 −5 + 3c1( )[ ] q3
 
 
 

  

 
 
 

  

−2 c1 + q( ) 4 log 1+ q( )

+2
c1 + q( ) 4 log c1 + q( )

+ −1+ c1( ) 3q 3 4 c1 + q + 3 c1q( ) log q( ) − log 1+ q( )[ ]

 
 
 

  

 
 
 

  

 

 

 
 
  

 

 
 
 
 

 

 

 
 
  

 

 
 
 
 

€ 

q =
Qc − Qx00 + mQs + Δ 0( )

S1

m = 0 for coasting beams 
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  Application to the case of the 
LHC at injection 

€ 

Qx00 = 64.31

€ 

Qy00 = 59.32

€ 

ε = 7.8 nm

€ 

a = ± ΔQoct,spread
x,rms / ε = ± 7164.2

  

€ 

b =  4647

€ 

Δ 0 ≈ −1.1×10
− 3

€ 

Δ a =18127

€ 

Δ b =12948

Approximate case 
(green) 
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  Height given  
by the octupoles 

   Given by the 
small-amplitude  
  space-charge     
     tune shift 

Given by the large-amplitude space-charge tune shift + octupoles 
          => Will move to the right with longitudinal motion  

  Stable (unstable) 
point with octupoles 
alone but unstable 
(stable) when SC 

added 

  Should  
be < 0! 
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  Coupled equations of motion with wake-fields 

€ 

˙ ̇ x i +Ωi
2 Q0x,i

2 + 2Q0x,iΔQinc,x( ) xi = −2Ωi
2 Q0x,i ΔQcoh,x − ΔQinc,x( ) x + K i Ri

2Ωi
2 yi

€ 

˙ ̇ y i +Ωi
2 Q0y,i

2 + 2Q0y,iΔQinc,y( ) yi = −2Ωi
2 Q0y,i ΔQcoh,y − ΔQinc,y( ) y + K i Ri

2Ωi
2 xi

€ 

K i = e / pi( ) ∂Bx,i /∂xi( )
  Normalised 
skew gradient 

  Using the normalised (Courant-Snyder) coordinates and angle, 
given by 

€ 

ηi = xi β0x,i
−1/ 2 s( )

€ 

ζ i = yi β0y,i
−1/ 2 s( )

€ 

φi =Q0x,i
−1 β0x,i

−1 t( ) dt
0

s

∫ ≈Q0y,i
−1 β0y,i

−1 t( ) dt
0

s

∫
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€ 

d2ηi

dφi
2 +Qx,i

2 ηi = β0x,i
3 / 2 β0y,i

1/ 2 Q0x,i
2 K i ζ i − ΔQcoh,x − ΔQinc,x( ) 2 Q0x,i

3 β0x,i
2

Ri
2 η 

€ 

d2ζ i
dφi

2 +Qy,i
2 ζ i = β0y,i

3 / 2 β0x,i
1/ 2 Q0y,i

2 K i ηi − ΔQcoh,y − ΔQinc,y( )
2Q0y,i

3 β0y,i
2

Ri
2 ζ 

  Assuming 

€ 

Qx,i = Q0x,i + ΔQinc,x

€ 

Qy,i = Q0y,i + ΔQinc,y

€ 

β0x,i ≈ Ri /Q0x,i ≈ R /Q0x0

€ 

β0y,i ≈ Ri /Q0y,i ≈ R /Q0y0

€ 

φi = Ωi t = Ω0 t = φ

€ 

Ri = R

€ 

K i = K 0
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€ 

d2ηi

dφ 2
+Qx,i

2 ηi = − j eβ I Zx

2π Rm0 γΩ0
2 η + R2 Q0x0

Q0y0

 

 
  

 

 
  

1/ 2

K 0 ζ i

€ 

d2ζ i
dφ 2

+Qy,i
2 ζ i = − j

eβ I Zy

2π Rm0 γΩ0
2 ζ + R2

Q0y0

Q0x0

 

 
 

 

 
 

1/ 2

K 0 ηi

  In the following, transverse betatron frequency spreads specified 
by externally given beam frequency spectra are assumed. The 
ensemble of particles has spectra with distribution functions 
which are supposed to be uncorrelated and normalised to unity 

  Moreover, in a circular machine, linear coupling is periodic in 
with period        , and thus can be expanded into Fourier series  

€ 

φ

€ 

2π
€ 

ρx ωx,i( )
−∞

+∞

∫ dωx,i =1

€ 

ρy ωy,i( )
−∞

+∞

∫ dωy,i =1
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€ 

K 0 φ( ) = ˆ K 0 l( ) e j lφ

l = −∞

l = +∞

∑

€ 

ˆ K 0 l( ) =
1

2π
K 0 φ( )

0

2π

∫ e− j lφ dφ

  Considering only the dominant Fourier component of the 
coupling (l) and following the standard procedure of identifying 
normal mode frequencies, yields particular solutions of the form  

€ 

ηi = Η i e
jQc φ

€ 

ζ i = Ζ i e
j Qc − l( ) φ

€ 

Η i =
1

Qx,i
2 −Qc

2 R2 Q0x 0

Q0y 0

 

 
  

 

 
  

1/ 2

ˆ K 0 l( ) Ζ i +
2ωx 0

Ω0
2 −Ux + jVx( ) Η 

 

 

 
 

 

 

 
 

€ 

Ζ i =
1

Qy,i
2 − Qc − l( ) 2 R2 Q0y 0

Q0x 0

 

 
 

 

 
 

1/ 2

ˆ K 0 − l( ) Η i +
2ωy 0

Ω0
2 −Uy + jVy( ) Ζ 

 

 
 
 

 

 
 
 
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  After integrating over both spectra and equating the terms  
in both equations, yields 

€ 

Η /Ζ 

€ 

ρx ωx,i( ) dωx,i

ωc − ωx,i−∞

+∞

∫
 

 
  

 

 
  

−1

−Ux + jVx

 

 

 
 

 

 

 
 
×

ρy ωy,i( ) dωy,i

ωc − lΩ0 − ωy,i−∞

+∞

∫
 

 
 
 

 

 
 
 

−1

−Uy + jVy

 

 

 
 

 

 

 
 

=
ˆ K 0 l( )

2
R4 Ω0

4

4 ωx 0ωy0

€ 

ωc =Ω0Qc

  The wake field terms must be evaluated at the local collective 
frequencies, given approximately by 
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€ 

ω1 ≈ nx + Qx0( ) Ω0

€ 

ω2 ≈ ny + Qy0( ) Ω0

 where the transverse azimuthal mode numbers are related by  

€ 

nx = ny − l

  Solution of the 2-dimensional dispersion relation considering 
Lorentzian spectra (already discussed before)  

€ 

ωc − ωx 0 −Ux − j δωx − Vx( )[ ] ×

ωc − ωy 0 − lΩ0 −Uy − j δωy − Vy( )[ ] =
ˆ K 0 l( )

2
R4 Ω0

4

4 ωx0ωy 0

=> 
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  The imaginary parts of the two coherent oscillation frequencies 
are given by  

€ 

Im ωc1,2( ) = δωx,y − Vx,y( ) ±
δωy − Vy − δωx + Vx( )

2
C a,δ( )

€ 

C a,δ( ) =1− 1
2

1− 4 a2 − δ 2 + −1+ 4 a2 + δ 2( )
2

+ 4δ 2

€ 

a =
ˆ K 0 l( ) R2Ω0

2

2 ωx0ωy 0 δωy − Vy − δωx + Vx

€ 

δ =
Ω0 Qh − Qv − l

δωy − Vy − δωx + Vx

with 

  Coupling (or 
sharing) function 
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where                                         are the horizontal and vertical 
coherent tunes in the presence of wake fields, but in the absence of 
coupling  

€ 

Qh,v = ωx0,y0 + Ux,y( ) /Ω0

€ 

δ =1

€ 

δ = 0.25

€ 

δ = 0



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /114 

EFFECT OF LINEAR COUPLING BETWEEN THE TRANSVERSE 
PLANES (9/35) 

88 

•   For               (no coupling)  

  Transverse stability criteria 

€ 

C = 0

•   For               (full coupling)  

€ 

C =1

•   Consider the interesting case of one unstable transverse plane 
in the absence of coupling. If the necessary condition of the 
previous equation is fulfilled, then it is possible to stabilize the 
beam in the two planes. The stabilizing values of the modulus of 
the Fourier coefficient of the skew gradient are given by  

€ 

δωx ≥ Vx

€ 

δωy ≥ Vy

€ 

δωx + δωy ≥ Vx + Vy

  Transfer of instability 
growth rates in the 

absence of betatron 
frequency spread   Transfer of Landau 

damping (but depends 
on the distribution) 
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€ 

ˆ K 0 l( ) ≥
2 −Qx0 Qy 0 δωx − Vx( ) δωy − Vy( )[ ]

1/ 2

R2Ω0

×

δωx + δωy − Vx − Vy( )
2

+Ω0
2 Qh − Qv − l( ) 2[ ]

1/ 2

δωx + δωy − Vx − Vy
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  Due to its infinite tails, the Lorentzian frequency distribution 
underestimate 2 important points 
  The 1st is the effect of the real betatron frequency shift, as 

already discussed in the uncoupled case 
  As a 2nd point, which is in fact closely related to the 1st, it will 

be found that too strong coupling can be detrimental and may 
shift the coherent frequency outside the spectrum and thus 
again prevent Landau damping. To study these two effects, 
consider elliptical spectra  

€ 

ωc − ωx 0 − 2Ux − j Δωx
2 − ωc − ωx 0( ) 2

− 2Vx
 
  

 
  

 
 
 

 
 
 
×

ωc − ωy 0 − lΩ0 − 2Uy − j Δωy
2 − ωc − ωy 0 − lΩ0( )

2
− 2Vy

 

 
 

 

 
 

 
 
 

 
 
 

=
ˆ K 0 l( )

2
R4 Ω0

4

ωx 0ωy0
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  Consider 1st the case with no horizontal frequency spread and no 
vertical wake field 

€ 

ωc −ωx 0 −Ux + jVx[ ] ×

ωc −ωy 0 − lΩ0 − j Δωy
2 − ωc −ωy0 − lΩ0( )

2 

 
 

 

 
 =

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx 0ωy0

€ 

κ =
ˆ K 0 l( )

2
R4 Ω0

4

Δωy
2ωx 0ωy0

 Let’s define 

For 

€ 

κ =1

€ 

ωc =ωx0 +Ux − jVx −
Δωy

2

4
ωy0 + lΩ0 −ωx0 −Ux − jVx( )
ωy0 + lΩ0 −ωx0 −Ux( )

2
+Vx

2
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 The necessary condition for stability (                           )   leads to 

€ 

1≤κ ≤ 2

For 

€ 

κ ≠1

€ 

ωc −ωx 0 −Ux + jVx[ ] ×

ωc +
Ux +ωx 0 −κ ωy 0 + lΩ0( )

κ −1
− j Vx

κ −1

 

 
 
 

 

 
 
 

=
ˆ K 0 l( )

2
R4 Ω0

4

4 ωx0ωy 0

κ
κ −1

 

 
 

 

 
 

€ 

Δωy ≥ 2 Ω0
2 Qh −Qv − l( ) 2 +Vx

2=> Stability criterion 

€ 

−Vx +
Vx

κ −1
≥ 0
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The imaginary parts of the 2 coherent oscillation frequencies are 
given by 

€ 

Im ωc1( ) = −Vx +
Vxκ

2 κ −1( )
C ′ a , ′ δ ( )

€ 

Im ωc2( ) =
Vx

κ −1
−

Vxκ
2 κ −1( )

C ′ a , ′ δ ( )

€ 

′ a =
Δωy

2Vx

κ −1

€ 

′ δ =
Ω0 Qh −Qv − l

Vx

κ −1
κ

 

 
 

 

 
 

=> Stability criterion 

€ 

Qh −Qv − l ≤
1
Ω0

Δωy
2

4
κ 2 −Δωy

2κ + Δωy
2 −Vx

2 +
4Vx

2

κ
−
4Vx

2

κ 2

 

 
 

 

 
 

1/ 2

  Same sharing function 
as before (for Lorentzian) 
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•   If                       , then it is impossible to stabilise the beam by 
coupled Landau damping: there is not enough Landau damping 
which can be transferred to the unstable plan 
•   The minimum frequency spread that can stabilise the beam is 

  In this case, there is only one condition for stability which is    

€ 

Δωy < Vx

€ 

Δωy = Vx

€ 

Qh −Qv − l = 0

€ 

κ = 2

•   If                       , then it is impossible to stabilise the beam by 
coupled Landau damping: there is not enough Landau damping 
which can be transferred to the unstable plan 
•   The minimum frequency spread that can stabilise the beam is 

  In this case, there is only one condition for stability which is    

•   If               , we can plot the curve describing the stability 
boundary, which takes different forms according to the value of  

€ 

Δωy > Vx

€ 

Δωy
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€ 

For Δωy = 2Vx

The “optimum” coupling   leads to the maximum of tune split 
tolerable for stability. It is obtained for               and the 
corresponding maximum tune split is  

€ 

κ

€ 

κ = 21/ 3

€ 

Qh −Qv − l max = 3Vx /Ω0( ) 1+ 22/ 3 1− 22/ 3( )
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  Consider now (as a 2nd case) the case with no horizontal 
frequency spread only 

€ 

ωc − ωx 0 −Ux + j Vx[ ] ×

ωc − ωy 0 − lΩ0 − 2Uy − j Δωy
2 − ωc − ωy 0 − lΩ0( )

2
− 2Vy

 

 
 

 

 
 

 
 
 

 
 
 

=
ˆ K 0 l( )

2
R4 Ω0

4

2 ωx 0ωy0

Putting        real and equating the real and imaginary parts 
separately, yields the conditions at the stability limit 

€ 

ωc

€ 

ωc −ωx 0 −Ux( ) ωc −ωy0 − lΩ0 − 2Uy( )

−Vx 2Vy − Δωy
2 − ωc −ωy0 − lΩ0( )

2 

 
 

 

 
 =

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx 0ωy0

(i) 
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€ 

Vx ωc −ωy0 − lΩ0 − 2Uy( )

+ 2Vy − Δωy
2 − ωc −ωy0 − lΩ0( )

2 

 
 

 

 
 ωc −ωx0 −Ux( ) = 0

Let’s consider the case where 

€ 

ωx0 + Ux =ωy0 + lΩ0 + 2Uy

Then (ii)  is verified if 

€ 

ωc =ωx0 + Ux

(ii) 

€ 

Δωy
2 − ωc −ωy0 − lΩ0( ) 2 = Vx + 2Vyor 

(iv) (v) 

If (iv) is fulfilled 
then (i) becomes 

€ 

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx0 ωy 0

= Vx Δωy
2 − ωc −ωy 0 − lΩ0( )

2
− 2Vy

 

 
 

 

 
 

(iii) 

(vi) 
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If (v) is verified then 

€ 

ωc −ωy0 − lΩ0( ) 2= Δωy
2 − Vx + 2Vy( )

2

Besides, (i) yields  

€ 

ωc −ωx 0 −Ux( ) 2
=

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx 0ωy0

−Vx
2

Using (iii), (vii) and (viii), one obtains  

€ 

ωc =ωy0 + lΩ0 + Uy +
1

4Uy

Δωy
2 − Vx + 2Vy( ) 2−

ˆ K 0 l( )
2

R4 Ω0
4

2 ωx 0ωy0

+ Vx
2

 

 

 
 

 

 

 
 

(vii) 

(viii) 

Equating                     in (ix) and (vii) gives a second order equation 
in                          . This can be solved in    

€ 

ωc −ωy0 − lΩ0( ) 2

(ix) 

€ 

Δωy
2 − Vx + 2Vy( ) 2

€ 

Δωy
2
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€ 

Δωy
2 = 4Uy

2 + 4Vy
2 + 4Vx Vy +

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx 0ωy0

± 4Uy

ˆ K 0 l( )
2
R4 Ω0

4

2 ωx 0ωy0

−Vx
2

 

 

 
 

 

 

 
 

1/ 2

Using (vi), the following equation is obtained  

€ 

Δωy
2 − 4Uy

2( )
2
− 2Vx Δωy

2 − 4Uy
2( )

3 / 2
+ Vx

2 − 4Vy Vx + 2Vy( )[ ] Δωy
2 − 4Uy

2( )
+4Vx Vy Vx + 2Vy( ) − 4Uy

2[ ] Δωy
2 − 4Uy

2( )1/ 2 + 4Vy
2 Vx + 2Vy( ) 2+16Uy

2Vx Vx + 2Vy( ) = 0

One has to solve this equation to find the two-dimensional criterion 
for     . Let’s consider the practical case where             , then the 
stability criterion reduces approximately to     

€ 

Δωy

€ 

U >>V

€ 

Δωy ≥ 4Uy
2 + (16 VxUy

2)2 / 3
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Since                       , a rough criterion is therefore just  

€ 

U >>V

€ 

Δωy ≥ 2 Uy

This is a very simple and interesting result which shows all the 
effectiveness of coupling in machines where           . At one 
dimension, one has to compensate       and       , for both planes 
separately. If one uses coupled Landau damping, the main part of the 
job, the cancellation of the effect of        , is done by coupling. Then it 
roughly remains to Landau damp      . Loosely speaking, one plane is 
thus stabilised by Landau damping and the other one is stabilised by 
coupling           

€ 

U >>V

€ 

U

€ 

V

€ 

Ux

€ 

Vx
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  Consider now (as a 3rd and last case) the case with the same 
distribution in both planes 

€ 

Δωx = Δωy = Δω

€ 

ωx0 =ωy0 + lΩ0 =ω0

€ 

ωc −ω0 − j Δω 2 − ωc −ω0( ) 2
+ 2 −Ux + jVx( ) 

  
 
  
×

ωc −ω0 − j Δω 2 − ωc −ω0( ) 2
+ 2 −Uy + jVy( ) 

  
 
  

=
ˆ K 0 l( )

2
R4 Ω0

4

ωx 0ωy0

This is a 2nd order equation in             
whose solutions are 

€ 

X =ωc −ω0 − j Δω 2 − ωc −ω0( ) 2
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€ 

X1,2 = Ux +Uy ±
1
2
B
B

A + A2 + B2

2

 

 

 
 

 

 

 
 

+ j −Vx −Vy ±
1
2

−A + A2 + B2

2

 

 

 
 

 

 

 
 

€ 

A =
4 ˆ K 0 l( )

2
R4 Ω0

4

ωx0ωy 0

+ 4 Ux −Uy( ) 2− 4 Vx −Vy( ) 2

€ 

B = −8 Ux −Uy( ) Vx −Vy( )

€ 

ωc1,2 =ω0 + XR1,2
Δω 2 + XR1,2

2 + X I1,2
2

2 XR1,2
2 + X I1,2

2[ ]
− j X I1,2

Δω 2 − XR1,2
2 − X I1,2

2

2 XR1,2
2 + X I1,2

2[ ]
=> 

€ 

XR1,2 = Re X1,2( )

€ 

X I1,2 = Im X1,2( )
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If                     and  

€ 

Ux =Uy =U

€ 

Vx =Vy =V

€ 

Δω ≥ 2 U +
ˆ K 0 l( ) R2Ω0

2

2 ωx 0ωy0

 

 

 
 

 

 

 
 

2

+ V 2

This is a very simple and interesting result which shows that if the 
coupling is too strong the coherent frequency is shifted outside the 
incoherent frequency spread and Landau damping is lost 
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  Therefore, linear coupling can have beneficial or detrimental 
effects 

  In addition, particular care should be also paid to the transverse 
emittances as in the case of non round beams a sharing and/or 
transfer of emittances can take place 

  To see this, let’s consider the case near the linear coupling 
resonance                             . In this case the following equations 
are obtained (see previous slides, but now without taking into 
account the wake fields)   

€ 

Δ = Qy − Qx = 0

€ 

d2η
dφ 2

+Qx
2η = R2K 0 ζ

€ 

d2ζ
dφ 2

+Qy
2ζ = R2K 0 η
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  In the absence of coupling, the solutions of the homogeneous 
equations are given by  

€ 

η = η0 e
jQx φ

€ 

ζ = ζ 0 e
jQy φ

  In the presence of coupling, the coupled equations can be solved 
by searching the normal (i.e. decoupled) modes (u, v), which are 
linked to (       ,       ) by a simple rotation 

€ 

η

€ 

ζ

€ 

η

ζ

 

 
 

 

 
 =

cosα − sinα
sinα cosα
 

 
 

 

 
 
u
v
 

 
 

 

 
 
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  The equations of the 2 normal modes are 

€ 

d2u
dφ 2

+Qu
2 u = 0

€ 

d2v
dφ 2

+Qv
2 v = 0

with (assuming small tune shifts) 

€ 

Qu = Qx −
C
2
tanα

€ 

Qv = Qy +
C
2
tanα

€ 

tan 2α( ) =
C
Δ
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  The solutions are given by  

€ 

u = η0 e
jQu φ

€ 

v = ζ 0 e
jQv φ

  Initially, the 2 planes are considered decoupled (there is a constant 
coupling         in time, but                   )  

€ 

|C |

€ 

Δ >> C

€ 

η = η0 e
jQu φ cosα − ζ 0 e

jQv φ sinα

€ 

ζ = η0 e
jQu φ sinα + ζ 0 e

jQv φ cosα

  By definition, the horizontal and vertical “single-particle” 
emittances are given by 

€ 

εx
sp = η

2

€ 

εy
sp = ζ

2
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which yields 

€ 

εx
sp = εx0

sp cos2α + εy0
sp sin2α − εx0

sp εy0
sp sin 2α( ) cos Qv − Qu( ) φ[ ]

€ 

εy
sp = εx0

sp sin2α + εy0
sp cos2α + εx0

sp εy0
sp sin 2α( ) cos Qv − Qu( ) φ[ ]

where                   and               are the initial uncoupled single-
particle transverse emittances  

€ 

εx0
sp = η0

2

€ 

εy0
sp = ζ 0

2

  It can be seen that in the presence of linear coupling the sum of 
the single-particle emittances is always conserved  

€ 

εx
sp + εy

sp = εx0
sp + εy0

sp

  If one now wants to look at the rms emittances (i.e. of the beam), 
one has to average over time (which is equivalent to an average 
over Φ), and over the particles in the beam   
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  The 1st gives 

€ 

εx
sp = εx0

sp cos2α + εy0
sp sin2α

€ 

εy
sp = εx0

sp sin2α + εy0
sp cos2α

Note that on the coupling resonance,                     . The oscillation 
period of the cosine terms of the previous page is thus                                                

If      is infinitely small, then an infinitely long time is needed to 
cross the resonance to average this term to 0. The  € 

Qv − Qu = |C |

€ 

Tφ = 2π / |C |

€ 

|C |

  The 2nd  gives 

€ 

εx = εx0 cos
2α + εy0 sin

2α

€ 

εy = εx0 sin
2α + εy0 cos

2α

 with 

€ 

εx = εx
sp

€ 

εy = εy
sp

€ 

εx0 = εx0
sp

€ 

εy0 = εy0
sp
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  Using the fact that 

€ 

cos 2α( ) = cos arctan
C
Δ

 

 
 

 

 
 

 

 
 

 

 
 = 1+

C 2

Δ2
 

 
  

 

 
  

−1/ 2

 one can show that 

€ 

sin2α =
C 2 / 2

Δ2 + C 2
+ Δ Δ2 + C 2

and therefore 

€ 

εx = εx0 − εx0 − εy0( ) C 2 / 2

Δ2 + C 2
+ Δ Δ2 + C 2

€ 

εy = εy0 + εx0 − εy0( ) C 2 / 2

Δ2 + C 2
+ Δ Δ2 + C 2

€ 

∂ f
∂Δ

C , Δ =0( ) =−
1
2 C

€ 

f C , Δ( ) =
C 2 / 2

Δ2 + C 2
+ Δ Δ2 + C 2
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  One sees that in the presence of very small coupling, 
i.e.                   , the transverse emittances are given by 

€ 

Δ >> C

€ 

εx = εx0

€ 

εy = εy0

  As coupling increases, the sharing of the emittances increases 
and reaches its maximum value for full coupling, where the 
emittances are given by 

€ 

εx = εy =
εx0 + εy0
2

  In the presence of very small coupling again, after the resonance 
crossing, i.e.                       , one has   

€ 

−Δ >> C

€ 

εx = εy0

€ 

εy = εx0
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  Measurements of emittance exchange performed in the CERN PS 
near  

€ 

Qx = Qy



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /114 

EFFECT OF LINEAR COUPLING BETWEEN THE TRANSVERSE 
PLANES (35/35) 

114 

€ 

C = 0.055

€ 

C = 0.120

€ 

C = 0.016
  Page 111 


