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Negative Mass Effect in Nonlinear Oscillatory System
and its Influence on Stability of Coherent Betatron
Oscillations®
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Abstract

The paper deals with stability of coherent betatron oscillations of the beam in a storage
ring with the account of the guide field nonlinearity and coherent and/or incoherent
tuneshift of the betatron oscillations.

The stability of coherent betatron oscillations is determined by an essentially nonlinear
effect, an analogue of the negative mass effect in longitudinal motion. The stability
conditions are found, a) determined by relation of the sign of the cubic nonlinearity of
the guide field and the sign of the collective force; b) dependent on the collective betatron
tuneshift and the betatron tune spread in the beam.

1 Introduction

In studies of stability of coherent beam motion in accelerators and storage rings, influence of
the cubic nonlinearity of the guide field is conventionally accounted in the tune spread which
determines the threshold current for the instability onset [1,2]. In this approach only the
absolute value of the cubic nonlinearity is important.

In the present paper we show that an essentially nonlinear effect, similar to the negative
mass effect in longitudinal motion, plays a decisive role in analysis of the coherent betatron
motion, fast damping, etc. With the account of this effect, the sign of the cubic nonlinearity is
crucial.

Experimental results from the VEPP-3 storage ring are well explained with this “negative
mass effect in the betatron phase space”. Details in observed decoherence signals on VEPP-1
[3] and fast damping signals on SPEAR [4] also find an explanation in the framework of this
model.

2 Hamiltonian of Coherent Betatron Oscillations

Consider one-dimensional (e.g., vertical) coherent betatron oscillations of the beam in a storage
ring, and take into account a weak nonlinearity of the guide magnetic field, f(z,6), and a weak
transverse collective force, ®(0)(z — y), directed to (from) the beam centroid, where y is the
position of the beam charge centroid, z is the coordinate of an individual particle and 8 is the
machine azimuth. The equations of motion,

2 +9(0)z = f(2,0)+2(6)(z-y),
yV'+90y = flu.9), 1)

*Translated from the Russian, Preprint INP 76-88, Novosibirsk 1876. _
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after the standard ansatz for the dynamical variables,

y - bw(8) cos (v + x(8) + ) ,
z = aw(f) cos (vl + x(0) + ),

yield the set of equations

¥ = —f(y,0)w(0)sin(v0+x(6) + ) ,

¢ = —p 0 w(@)cos (0 +x(0) +) ©
o = —[f(z,6)+2(0)(z— y)]w(®)sin (v 0 + x(6) +¥) ,

Y= 2 [£(20) + 2(0) (z — )] w(8) cos (v O+ x(6) + ¥) -

We defined the focusing function of the lattice g(6), the nominal betatron tune v, whilst
w(6)eX® is the complex Floquet function.

For small f and ®, the amplitudes and phases (b, @), (a,%) in Egs. (2) can be regarded as
slow variables. Apart from a resonance, v # p/q, where p, q are integers, we can average Egs.
(2) over the fast betatron phase and azimuth to obtain shortened equations

d = —bvbsin(y— ), | ,

! = —(2—1-}-‘2+5 1—P-cos(v,b—- )

Vo= 5az” Y a el

¥o= 0, (3)
, _ Ov o,

Y = aazb)

where
bv = -—é (w?(6)®(6))

is the incoherent betatron tuneshift, and

22 =3 (wont®)

is the anharmonicity caused by the cubic nonlinearity in the guide field,
F(y,0) = =X(8) 2° — p(6) 2° ~ €(6) 2* + o(2°).

In the action-angle variables J = a% — b2, n = 9y — ¢, Eqgs. (3) form a canonical set with the
Hamiltonian

1
H=§%J2+5u (J—-Qb\/bz—%-Jcosn). (4)
The relative phase 7 is counted from the beam centroid phase, and J is its conjugate momentum.
The first term in the Hamiltonian (4) is similar to kinetic energy, with the effective mass
(0v/8a*)~!, while the second term is characteristic of a force directed to (from) the beam
centroid.



2.1 Stability Condition

For small deviations from the beam centroid, J <« 5%, 5 < 1’, from Eq. (4) follows the
linearized Hamiltonian .

1L/ov v\ , 9 9
Hz='2‘(5a§+§-b—2)«] + évb°n®, (5)
which yields linear phase oscillations with the frequency
0
V‘; = dv (51/ + QbZE—EUE) (6)
expressed in units of the revolution frequency wy.
Note that the effective mass
v sv\*
M= (—a—gz‘ + 555) (7)

is modified by the interaction parameter.
Motion around the beam centroid is unstable, if 1/3, < 0, or, in explicit form:

v !
55 < 0. (8)
262 ‘

da?

In other words, the motion is unstable when the sign of the driving force is opposite to the sign
of the effective mass M. Converse situation leads to autophasing in the betatron phase space:
the driving force will bunch the beam particles around its center; the equilibrium phase will
then coincide with the phase of the beam centroid oscillations.

Contrary to the conventional negative mass effect in rotational motion, e.g., in longitudinal
motion of particles in a circular accelerator [5], or in motion of satellites around planets [6],
here we have the negative mass effect in oscillations.

-1 <

2.2 Phase Space of the System

Consider the phase space of the system described by Egs. (3), i.e. the phase-space trajectories
H = const with the Hamiltonian (5), in the polar coordinates a, n. We distinguish four
situations with different location of the fixed points A, B, C of H, depending on the parameter
6 defined below.

1) The sign of the effective mass M is the same as the sign of dv, and opposite to the sign
of unperturbed effective mass dv/8a*:

<-1.
da?

Here the vicinity of the beam centroid, around point B, is stable within the bounds of the
betatron autophasing domain (BAD) which is drop-shaped and in terms of 7 it has a width
dependent on év, see Fig. 1d.

2)

v

bvM <0, M§a2

>0, le, —1<6<0.



Figure 1: Four different patterns of the negative mass effect in the betatron phase space.

In Fig. 1c we can see the saddle point at B, hence the vicinity of the beam center is unstable.
The particles whose initial positions are near point B will loose coherency, the phase 7 is not
bounded. ' :

3)
1 1
bvM >0,0<6< 3
The beam center B is stable within the crescent—shaﬁed BAD whose width depends on év, see
Fig. 1b. ‘

4) The case § > 3 also corresponds to stability of the beam center. However, now all the
phase-space trajectories encircle point B which means infinite limits of BAD, see Fig. 1la.

2.3 Beam Size Consideration

As follows from Eq. (8), point B with J = 0, 7 = 0, can be stable no matter how small [6v] is.
In practice, we should consider the finite beam size o to decide whether the oscillations of all
the particles in the beam can stay coherent with a certain value of |6v|. The necessary condition
for the oscillations to stay coherent is that the betatron autophasing domain surrounding B
should be wider than the beam size 0. For 0 < § < 1, from Eq. (4) we obtain:

o5 (o /22)" - ©



Combining Egs. (8) and (9), we come to a conclusion: for a beam with transverse size o
oscillations excited by a kick with amplitude b (b > o) stay coherent (see Figs. 1d or 1b) if
ov v
v < =2 bzg—;, or dv > g—&,}az, (10)
the coherent amplitude and the beam size do not vary. In the opposite case, the coherency of
the oscillation is lost because of decoherence of oscillations of individual particles of the beam.
In general, the beam shape is not matched with the phase-space ellipse given by Eq. (5),
so after the kick excitation the beam size oscillations are possible at the beat frequency 2v,.
Egs. (6), (8) and (10) relate observable quantities. Provided that the cubic nonlinearity is
tunable and the anharmonicity dv/8a? is measurable, observation of the modulation frequency
of the dipole moment of the beam distribution function reveals the collective force directed to
(from) the beam center and gives the means to evaluate the collective tuneshift §v. This exper-
imental method yields 6v as a net effect rather than a small correction to the fractional tune
{v} which typically is much greater than év; this can improve the accuracy of measurements.

3 Extension of the Model for Coherent Tuneshift

Consider now the betatron oscillations of the beam interacting with the machine components,
e.g., the vacuum pipe walls, kicker structures, cavities, etc. In the linear approximation, instead
of Eq. (1) we write

Z'+g0)z = f(2,0)+A@B)z+ B0y,
¥ +g(0)y = f(v,0)+[A(6)+ BBy, (11)

where A and B describe the collective interaction and are similar to those defined in [7].
Changing the notation,

g = g—A-B

® = -B
we reduce the problem to the case considered in Section 1, and apply the same transformations

to Egs. (11). Shortened equations (3), Hamiltonian (4) and conditions (8) and (10) preserve
their form with new definitions:

v = bvie — bve,
where
1
bric= —5 (w*(6)A(9))
is the incoherent betatron tuneshift, and
1
bv.= -5 <w2(9)[A(9) + B(G})

is the coherent betatron tuneshift.

For the most cases, in transverse coherent effects increments (or decrements) are much
smaller than év, therefore the amplitude variation is adiabatically slow on the time scale of the
considered above effects. That is why conditions (10) are valid to determine existence of dipole
modes in most of the coherent effects. In other words, conditions (10) determine the threshold
currents for dipole modes in the coherent phenomena.

5



Experiments at VEPP-3 and SPEAR [4] revealed dependence of the coherent effects on
the sign of the cubic nonlinearity, dv/8a®. Conditions (10) provide the explanation of this

dependence.
In addition, from Eq. (8) we can conclude that at év / 5‘% < 0 the amplitude growth caused
by an instability should cease when the beam centroid amplitudes reach

1/2
bv

boax = | =5

027
da?

This saturation phenomenon, as well as saw-tooth behavior of instability, were observed at
many machines.

4 Conclusion

It is worth noting that the above consideration of stability of dipole coherent oscillations with
an amplitude much larger than the beam size gives a qualitative approach to the necessary
conditions for an instability onset. Assume that the instability is provoked by a coherent seed,
i.e., a small fluctuation of the charge density in the beam with non-zero initial dipole moment,
and suppose its characteristic size is small as compared with its coherent oscillation amplitude.
Then defining the tuneshift due to its dipole moment év¢ and the total anharmonicity from the
guide field and the collective fields (£%)., we conclude from Eq. (10) that at 6vf (2%),, < 0
the fluctuation is smeared out due to fast decoherence, see Fig. lc.

Thus, a coherent instability can only develop with one sign of the cubic nonlinearity, while
at another sign onset of the instability is prohibited by the negative mass effect in the betatron
motion. In particular, this simple rigid beam model provides for visual interpretation of coherent
instability conditions, involving the sign of the cubic nonlinearity, as formally obtained in [8].

In conclusion, the authors express their gratitude to Ya.S. Derbenev and A.N. Skrinsky for
useful discussion of the subject of this paper.
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