

COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTOR COMPLEX

Elias Métral (Invited talk, THYB03, 25 + 5 min, 26 slides)

Dedicated to Dieter Möhl (my PHD thesis director) who passed away last night. Many thanks for all!

- Introduction and main challenges
- Best results so far and main limitations from collective effects
 - LHC INJECTORS: LINAC2 (4), PSB, PS, SPS TUXA02 (R. Garoby)
 - LHC MOXBP01 (S. Myers), THPPP020
- Some (nice) pictures
- Conclusion and outlook
- APPENDIX: Some (more) pictures and results

INTRODUCTION AND MAIN CHALLENGES (1/4)

- 2 MAIN CHALLENGES FOR LHC => Very high B (2-in-1 SC magnets + superfluid helium at 1.9 K) and very high Lumi
 Round beam
- PEAK LUMINOSITY

$$L_{peak} = \left(\frac{e c^{2}}{8 \pi^{2} E_{0}}\right) \left(B \frac{\rho}{R}\right) \left(\frac{N_{b}}{\varepsilon_{n}}\right) \left(N_{b} M\right) \frac{F\left(\theta_{c}, \sigma_{z}, \beta^{*}, \varepsilon_{n} / \gamma\right)}{\beta^{*}}$$

- 1st term: constant
- 2nd term: Magnetic field (8.33 T ⇔ 7 TeV proton energy)
- 3rd term: Bunch brightness => SC, BBHO, IBS, TCBI of higher head-tail modes (-1) to be stabilized by Landau octupoles
- 4th term: Total beam current => RF heating, TCBI of mode 0 to be stabilized by transverse damper, TMCI, e-cloud, BBLR, cryogenic load, collimation system (large impedance)...
- 5th term: Lattice (high gradient quadrupole lenses and interaction region geometry), BBLR, RF voltage (bunch length)...

INTRODUCTION AND MAIN CHALLENGES (2/4)

=> Future upgrades with smaller β^* : crab cavities, smaller bunch length (additional RF system), flat beams, BBLR compensation...

Elias Métral, IPAC2012, New Orleans, Louisiana, USA,

MOPPC027, TUPPR027, WEPPC027, TUPPR077

INTRODUCTION AND MAIN CHALLENGES (3/4)

- ◆ 2 MAIN CHALLENGES FOR THE LHC INJECTORS
 - Preservation of transverse emittance => High brightness
 - Generation of longitudinal structure (25 ns bunch spacing)
 - Very long bunches (~ 180 ns at 4σ) at PSB-PS transfer
 - Very short bunches (~ 1-1.5 ns at 4σ) at SPS extraction

=> Multiple bunch splittings in PS: 12 for 25 ns (and 6 for 50 ns)

- => As PSB could not deliver beams with sufficient brightness, a double-batch scheme was proposed
- => Due to large SC at PS injection, PSB extraction kinetic energy was raised from 1 to 1.4 GeV

INTRODUCTION AND MAIN CHALLENGES (4/4)

BEST RESULTS SO FAR (before end of last week)										
MOPPC005										
LHC (in physics)			Achieved (2012)	Nomi	Future High- Lumi LHC					
Proton energy [TeV]			4.0	7	7					
Bunch spacing [ns]			50	25		25		50		
Bunch population [10 ¹¹ p/b]			1.35	1.15		2.2		3.5		
Norm. rms.trans. emittance [µm]			~ 2.1	3.75	3.75		5	3.0		
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]			~ 0.56	1	1					
Injectors	50	ns	25	ns	Sing		le bunch			
TUXA02	# p/b [10 ¹¹]	$(\epsilon_{nx}+\epsilon_{ny}) / 2 [\mu m]$	# p/b [10 ¹¹]	$(\epsilon_{nx}+\epsilon_{ny}) / 2 \ [\mu m]$	# p [10	/b ¹¹]	(ε_{nx})	_x +ε _{ny}) / [μm]		
PSB	See plot PSB emittance vs. bunch intensity 4.0 2.2							2.2		
PS	1.9	1.9	1.4	3.0	4.0		2.4			
SPS nom.	1.6	1.9	1.15	2.6	2.5		2.5			
SPS new optics	1.7	?	1.2	2.7	3.0		2.2			
LHC	1.45 1.35	~ 2.3 ~ 2.1			1.9 2.4	9 4	1 2	.1-1.2 .5-3.0		

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (1/6)

- LINAC2-PSB
 - Space charge:

$$\Delta Q_{\rm SC} \propto \frac{N_b R}{\varepsilon_n \beta \gamma^2 \sigma_z}$$

- "Space charge limit" under investigation (~ 0.5 already achieved, losses) => Dynamic working point + resonances compensation
- LINAC4 (160 MeV) will replace LINAC2 (50 MeV) => Factor 2
- To profit from this in PS => Increase PSB extraction kinetic energy from 1.4 to 2 GeV => Factor 1.6
- **PS**
 - "Space charge limit" under investigation (~ 0.26 already reached)
 - Horizontal head-tail instability on the long 1.2 s injection flat bottom => No pb with linear coupling. Studies ongoing for 2 GeV

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (2/6)

- e-cloud build-up (and sometimes instabilities if bunch too small for too long a time) => No pb for the moment but under investigation for future requests WEPPR010
- Longitudinal plane
 - Coupled-bunch instabilities during the ramp after transition and on flat-top. Limit at ~ 1.9 10¹¹ p/b (for both 25 ns and 50 ns) => Wideband kicker
 - Transient beam loading during bunch splitting => New oneturn delay feedbacks

SPS

Fast vertical single-bunch instability at injection (with very low positive chromaticity). Limit at ~ 1.6 10¹¹ p/b in good agreement with impedance model (without space charge) but the "clear" mode-coupling could not be observed (maybe indirect measurement of mode-coupling / decoupling)

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (3/6)

- => New optics with a lower gamma transition (to increase distance from transition). Expected new limit ≥ 3.5 10¹¹ p/b WEPPR078
- "Space charge limit" under investigation (~ 0.19 already achieved)
- e-cloud
 - Major problem for many years for nominal LHC beam
 - Beam quality seems to be acceptable since 2011 (which still needs to be fully understood)
 - For higher intensities => Plan to coat large parts of the inside of the SPS vacuum chambers with amorphous carbon
 - New optics should also be better for the e-cloud instability.
 Detailed studies ongoing
 - High-bandwidth feedback (CERN US LARP)

MOEPPB015, WEPPP074, WEPPP079, WEPPP080, WEPPR090, WEPPR091

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (4/6)

- Longitudinal plane
 - Instability during the ramp. Limit at ~ 2 10¹⁰ p/b at the end of the ramp => 4th harmonic RF system (800 MHz) and controlled longitudinal emittance blow-up. Beneficial effect of new optics under investigation
 - Beam loading => RF power upgrade (for future requests)
- LHC

MOPPC001, WEPPR068, WEPPR076

- e-cloud => Scrubbing (4-fold strategy + some solenoids added) with high chromaticity
- Loss of longitudinal Landau damping => Controlled blow-up
- Transverse coherent instabilities

WEPPR073

- Mode 0 => Transverse damper. Rise-times measured close to predictions at 450 GeV and maybe factor 2-3 faster at 3.5 TeV
- Mode 1 => Landau octupoles (single- and coupled-bunch).
 - 2 dedicated measurements close to predictions

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (5/6)

- Transverse impedance
 - Large transverse (imaginary) impedance from collimators can lead to a loss of transverse Landau damping => Increase Landau octupoles' current. Ongoing studies to fully understand the larger than predicted current in operation
 - Larger than predicted transverse (imaginary) impedance could lead to TMCI. Current thresholds: ~ 9 10¹¹ p/b (450 GeV) and ~ 4 10¹¹ p/b (4 TeV, 2012 with tight collimators setting) => In case of problem, increase chromaticity, highbandwidth FB, reduce imp. ...
- Beam-beam

$$\Delta Q_{\rm BBHO} \propto \frac{\kappa_{\rm HO} N_b}{\varepsilon_n} \quad \tau_{\rm IBS} \propto \frac{\varepsilon_n^2 \varepsilon_l}{N_b} G_{\rm IBS}$$

- HO: ξ ~ 0.034 achieved for 2 collision points (IP1 and IP5), i.e.
 ~ 0.017 / IP (nominal value was ~ 0.0035) => Small emittance!
- PACMAN => Alternating crossing scheme to compensate for the tunes (orbits can only be minimized)

MAIN LIMITATIONS FROM COLLECTIVE EFFECTS (6/6)

- Coherent beam-beam modes => With few bunches only. Tune split if needed (but should not with many bunches)
- Leveling (by transverse offsets) => For IP2 and IP8 (in operation since 2011)
- Coherent instabilities observed when crossing angle too small or transverse offsets between ~ 1 and 2 σ in IP1 and IP5 or ? => Under investigation
- RF heating (real part of the longitudinal impedance)
 - Injection kickers WEPPR071
 - Injection protection collimator WEPPR068
 - RF fingers => Task force in 2012
 - => Longer bunch usually better (10 cm rms used in 2012 vs. 7.5 cm nominal)
- UFOs (Unidentified Falling Objects) THPPP086

SOME (NICE) PICTURES (3/11)

 Loss of longitudinal Landau damping during LHC acceleration when the longitudinal emittance is too small

SOME (NICE) PICTURES (4/11)

 Single-bunch head-tail instability m = - 1 without Landau octupoles (for Q' ~ 6) on LHC flat-top

SOME (NICE) PICTURES (5/11)

- TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
 - Good agreement at 450 GeV

- ~ 2-3 faster rise-times observed at 3.5 TeV (but uncertainty on chromaticities)
- Landau octupoles' current for stability at 3.5 TeV within factor ~ 2 with predictions (less than predicted => Studies with Q" ongoing) Elias Métral, IPAC2012, New Orleans, Louisiana, USA, 21-25/05/2012

SOME (NICE) PICTURES (6/11)

ECLOUD studies in the LHC with 25 ns beam

SOME (NICE) PICTURES (7/11)

Simulations $\rightarrow \delta_{max}$ fixed to **1.5** (added 2e9p⁺/m uncapt. beam)

Measurements \rightarrow the energy loss per bunch is obtained from the stable phase shift

<u>G. ladarola, G. Rumolo, J.E. Muller, E. Shaposhnikova et al.</u>

SOME (NICE) PICTURES (8/11)

G. ladarola, G. Rumolo,

J.E. Muller, E. Shaposhnikova et al.

SOME (NICE) PICTURES (9/11) **Beam-beam** \blacklozenge **PACMAN** effects clearly visible G. Papotti, W. Herr et al. fill 1917 - beam 1 fill 1917 - beam 1 number of LR interactions integrated loss [10⁹ppb] 20 m 15 15 10 10 5 5 0 C00000000000 20 30 40 20 30 10 10 40 0 0 bunch number bunch number

SOME (NICE) PICTURES (10/11)

Elias Métral, IPA

SOME (NICE) PICTURES (11/11)

- Coherent beam-beam modes have been observed colliding 2 bunches (demonstrated by analysis of sum and difference of the measured positions of the 2 beams)
- Symmetry breaking suppresses modes as expected

CONCLUSION AND OUTLOOK

- Relatively good understanding of the many collective effects and possible cures
 TUXA02
- Detailed upgrade plan for the injectors has been clearly defined
- In the LHC, the possible limitations should come from
 - Loss of Landau damping for the TCBI of head-tail mode 1
 - e-cloud effects for the 25 ns beam
 - RF heating

Still to be fully understood!

- Beam-beam (with its variety of effects and in particular its interplay with the transverse impedance, Landau damping through octupoles and transverse damper)
 => Some coherent instabilities observed with too small crossing angle or transverse offsets (~ 1-2 σ) in IP1 and IP5 or ?, with rise
 - times similar to the predicted ones from the impedance...
- ... with some perturbations expected from the UFOs

CO-AUTHORS

G. Arduini, R. Assmann, H. Bartosik, P. Baudrenghien, T. Bohl, O. Bruning, X. Buffat, H. Damerau, S. Fartoukh, S. Gilardoni, B. Goddard, S. Hancock, W. Herr, W. Hofle, N. Mounet, Y. Papaphilippou, T. Pieloni, G. Rumolo, B. Salvant, E. Shaposhnikova, F. Zimmermann, (CERN, Geneva, Switzerland) and A. Burov (FNAL, Chicago, USA)

ACKNOWLEDGEMENTS

M. Giovannozzi, many (other) people from CERN (OP team...) and other labs

APPENDIX:

SOME (MORE) PICTURES AND RESULTS

LINAC2-PSB

PS (2/5)

- 2 (stabilizing) effects predicted with linear coupling
 - Transfer of instability growth rates ۲
 - **Transfer of Landau damping** ۲

Measurements in 2011 on a 2 GeV plateau by E. Benedetto seem to be in qualitative agreement (no stability above the diagonal). Ongoing analyses Elias Métral, IPAC2012, New Orleans, Louisiana, USA, 21-25/05/2012

Benoit Salvant

HEADTAIL simulations confirmed the transfer of instability growth rates (chromaticity sharing)

• Effect of space charge remains to be studied in detail but a lot of progress has been made over the last few years (Burov2009-2011, Balbekov2011, Kornilov-Frankenheim2010) which can explain why space charge has almost no effect => $\Delta Q_{sc} / Q_s >> 1$ (~150)

PS (4/5)

Longitudinal coupled-bunch instability

PS (5/5)

 e-cloud: Appears only in the last stages of the RF gymnastics before extraction. Dedicated experiment (shielded pickup) available

SPS (1/5)

 A fast vertical single-bunch instability can be observed at injection with very low positive chromaticity (believed to be TMCI)

H. Burkhardt et al.

Synchrotron period
$$\approx$$
 7 ms
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.2 \text{ eVs} < \varepsilon_{l}^{\text{LHC}} = 0.35 \text{ eVs}$
 $\varepsilon_{l} \approx 0.4 \text{ evs}$
 $\varepsilon_{l} \approx 0.3 \text{ evs}$
 $\varepsilon_{l} \approx 0.4 \text{ evs}$
 $\varepsilon_{l} \approx 0.2 \text{ evs}$
 $\varepsilon_{l} \approx 0$

SPS (3/5)

Assuming the coasting-beam formalism with peak values (and a Broad-Band impedance), the intensity threshold scaling (without space charge) is given by

 \mathcal{E}_L

$$f_{\xi_y} = Q_{y0} f_0 \frac{\varsigma_y}{\eta}$$

Increase the chromatic frequency
 Chromaticity jump in case transition has to be crossed

Try to decrease the impedance and/or increase the resonance frequency => Impedance reduction campaign

 $N_b^{th,y}$

BB

 Z_{v}^{BB}

Increase the beam longitudinal emittance (when possible)

Change the optics to decrease the betatron function and/or go further away from transition => New optics studied

SPS (4/5)

Longitudinal instabilities

Elena Shaposhnikova et al.

SPS (5/5)

• Space charge studies

Hannes Bartosik et al. (new optics)

39/26

LHC (3/9)

- TCBI rise-time studies (for mode 0) with 48 bunches (12 + 36)
 - Landau octupoles used at 3.5 TeV to stabilize the beam

Landau octupole current [A]	Beam 1	Beam 2
HEADTAIL predictions (Gaussian bunch)	120	100
Measurements	60	70

- Simulations are more critical (but uncertainty on chromaticities)
- Remaining difference could maybe be explained by the Q" effect introduced by the octupoles (ongoing analyses)

LHC (7/9)

♦ RF HEATING

Coupled-bunch lines spaced by *M f*₀ ~ 20 MHz (for 50 ns bunch spacing) => It would be ~ 40 MHz for 25 ns

Themis Mastoridis and Philippe Baudrenghien

LHC (8/9)

e-cloud

- Pressure rise, heat load in the arcs, beam instability, emittance growth and synchronous phase shift
- Successful dedicated scrubbing run for physics operation in 2011

LHC (9/9)

e-cloud summary (at the end of 2011)

	Uncoated straight section	Arc dipoles
Estimated δ_{\max}	1.35	1.52
Threshold δ_{max} (25ns, 450 GeV)	1.25	1.45
Threshold δ_{max} (25ns, 3.5 TeV)	1.22	1.37
Threshold δ_{max} (50ns, 450 GeV)	1.63	2.2
Threshold δ_{max} (50ns, 3.5 TeV)	1.58	2.1

Prediction for the scrubbing time needed for 25 ns physics operation: ~ 20 h of beam time (i.e. ~ 2 weeks)