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MEASUREMENT OF THE SPACE CHARGE TUNE 
SPREAD WITH A QUADRUPOLAR PICK-UP:  

WHERE DOES THE FORMULA COME FROM? 

E. Métral 
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INTRODUCTION (1/5) 

◆  2D tune footprint ◆  3D tune footprint 
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INTRODUCTION (2/5) 
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INTRODUCTION (3/5) 

◆  Some past measurements for instance from M. Chanel => Study of 
beam envelope oscillations by measuring the beam transfer function 
w i t h  q u a d r u p o l a r p i c k - u p  a n d  k i c k e r  (
https://accelconf.web.cern.ch/accelconf/e96/PAPERS/WEPG/
WEP014G.PDF) 

◆  Recent measurements by R. Singh et al. (with Marek Gasior from 
CERN) => Observations of the quadrupolar oscillations at GSI SIS-18 
( h t t p : / / w w w . r e s e a r c h g a t e . n e t / p u b l i c a t i o n /
267195479_OBSERVATIONS_OF_THE_QUADRUPOLAR_OSCILLATI
ONS_AT_GSI_SIS-18)  

=> W. Hardt derived the oscillation frequencies obtained in the 
presence of space charge forces and gradients errors for elliptical 
beams (W. Hardt, On the incoherent space charge limit for elliptic 
beams, CERN/ISR/Int. 300 GS/66.2, 1966) 



Elias Métral, Space Charge meeting, CERN, 18/12/2014 

INTRODUCTION (4/5) 

◆  Measurement method 
§  The signals of 2 two horizontal electrodes are summed (as well 

for the vertical electrodes) for the suppression of the transverse 
dipole modes 

§  The two signals obtained are then subtracted to suppress the 
longitudinal mode (sum signal) 

§  The injection mismatch is usually used to excite the beam size 
oscillations 

§  To enhance the signal, an excitation of the beam envelope can 
also be sent through a quadrupolar kicker (if there is one…) 
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INTRODUCTION (5/5) 

=> Purpose of this talk: re-derive the equation used to 
deduce the space charge tune spread 

See also USPAS2009 course  
(on space charge and envelope 

equations) and references therein 
(http://emetral.web.cern.ch/

emetral/ ) 

§  Info from Marek Gasior about the QPU 
•  A frequency domain analysis is made to be able to 

disentangle between dipolar and quadrupolar frequencies => 
Only the quadrupolar frequency shift is measured with the 
QPU 

•  The transverse beam sizes need to be measured with 
another equipment 
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SPACE CHARGE FORCE (1/5) 

◆  Relativistic transformation of the ElectroMagnetic (EM) fields 
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! s =
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SPACE CHARGE FORCE (2/5) 

◆  Lorentz force on the particle 2 moving with velocity    

€ 

! v 2 = v2
! s 

  

€ 

! 
F = e

! 
E + ! v 2 ×

! 
B ( )

◆  Beam 1 produces only an electric field in its rest frame R’ 

=> 

€ 

" B x = " B y = " B s = 0

€ 

Bx = −
v1
c 2

Ey

€ 

By =
v1
c 2

Ex

€ 

Bs = 0

=> 

€ 

Fx,y = e Ex,y
1− β1 β2( ) if 2 moves in same direction as 1 
1 + β1 β2( ) if 2 moves in oppo. direction as 1

Space charge 

Beam beam 
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SPACE CHARGE FORCE (3/5) 

◆  Assuming β1 = β2 = β 

=> 

€ 

Fx,y = e Ex,y 1− β
2( ) = e

Ex,y

γ 2

and 

€ 

" E x,y =
Ex,y

γ

€ 

" E s = Es

€ 

" B x = " B y = " B s = 0
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Bx = −
β
c
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€ 
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β
c
Ex

€ 
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Electric part Magnetic part 
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SPACE CHARGE FORCE (4/5) 

Courtesy K.H. Schindl 

◆  EM fields of a cylinder with uniform density (with radius a) inside a 
beam pipe of radius b 

§  Charge density [C/m3] 

§  Line density [C/m] §  Total Current [A] 

€ 

ρ =
q

π a2 l

€ 

q = Nb e

€ 

λ0 =
q
l

€ 

I = λ0 v

§  Current  density [A/m2] 

€ 

J = ρ v
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SPACE CHARGE FORCE (5/5) 

◆    

=> 

  

€ 

div
! 
E ∫∫∫ dV =

! 
E . d
! 
S ∫∫ =

1
ε

ρ∫∫∫ dV

€ 

Er 2 π r l =
1
ε0
ρ π r2 l for r < a

Er 2 π r l =
1
ε0
ρ π a2 l for a < r < b

=> 

€ 

Er =
λ z( )
2 π ε0

r
a2

for r < a

Er =
λ z( )
2 π ε0

1
r
for a < r < b

=> The (radial) Lorentz force on a particle of charge e inside the 
uniform cylinder is 

€ 

Fr =
e
γ 2

Er =
e

2 π ε0 γ
2 λ z( ) r

a2

€ 

λ0 →λ z( )

Generalization 
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◆  Consider a particle in an ensemble of particles which obeys the 
single-particle equations 

!x = px

€ 

" p x =
Fx x , s( )
β 2 Etotal

◆  The total force is  

€ 

Fx x , s( ) = Fx
ext + Fx

SC

◆  Let’s consider a particle distribution                      . Averaging over 
the particle distribution, we obtain the equations of motion for the 
centre of the beam 

€ 

f x , px , s( )

€ 

< x " > = < px >

€ 

< px " > =
<Fx x , s( )>

β 2 Etotal

=
<Fx

ext >
β 2 Etotal

as                      , because of Newton’s 3rd law 

€ 

<Fx
SC > = 0

1D TRANSVERSE ENVELOPE EQUATION (1/8) 

!x = d x
d s
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◆  For a linear machine, one has 

€ 

Fx
ext

β 2 Etotal

= − Kx s( ) x

=>  

€ 

< x " " > + Kx s( ) < x> = 0

◆  The 2nd moments satisfy the equations 

€ 

< x 2 " > = 2 < x " x >= 2 < x px >

€ 

< x px " > = < " x px > + < x " p x > = < px
2 > − Kx s( ) < x 2 > + < x Fx

SC

β 2 Etotal

>

€ 

< px
2 " > = 2 < px " p x >= − 2 Kx s( ) < x px > + 2 < px

Fx
SC

β 2 Etotal

>

1D TRANSVERSE ENVELOPE EQUATION (2/8) 
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◆  To study space-charge effects, we are interested in the position and 
momentum offsets of the particles from their respective averages, i.e. 

€ 

Δx = x − < x>

€ 

Δpx = px − < px >

=>  

€ 

<Δx 2 # > = 2 <Δx Δpx >

€ 

<Δx Δpx # > = <Δpx
2 > − Kx s( ) <Δx 2 > + <Δx Fx

SC

β 2 Etotal

>

€ 

<Δpx
2 # > = − 2 Kx s( ) <Δx Δpx > + 2 <Δpx

Fx
SC

β 2 Etotal

>

◆  Define the rms beam emittance 

€ 

εx,rms = <Δx 2 > <Δpx
2 > − <Δx Δpx >2

 and rms beam size 

€ 

σ x = <Δx 2 >

1D TRANSVERSE ENVELOPE EQUATION (3/8) 
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=>  

€ 

<Δpx
2 > =

εx,rms
2 + <Δx Δpx >2

<Δx 2 >

€ 

" σ x =
<Δx Δpx >

<Δx 2 >

€ 

" " σ x =
<Δx Δpx " > 

<Δx 2 >
−

<Δx Δpx >2

<Δx 2 >3 / 2

◆  Finally, the 1D transverse (horiz.) envelope equation can be obtained 

€ 

" " σ x + Kx s( )σ x −
εx,rms
2

σ x
3 −

<Δx Fx
SC >

σ x β
2 Etotal

= 0

1D TRANSVERSE ENVELOPE EQUATION (4/8) 
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1D TRANSVERSE ENVELOPE EQUATION (5/8) 

◆  Inserting the SC force, this yields 

€ 

Fx
SC

β 2 Etotal

=
eλ

β 2 Etotal 2 π ε0 γ
2
Δx
a2

=> 

with 
€ 

λ =
Nb e
l

= Nl e

€ 

a = 2σ x

Fx
SC

β 2 Etotal

= Ksc
Δx
a2

Ksc =
2Nl rp
β 2 γ 3

Therefore,  
<Δx Fx

SC >
β 2 Etotal

=
Ksc

4

rp =
e2

4 π ε0 m0 c
2
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1D TRANSVERSE ENVELOPE EQUATION (6/8) 

◆  The 1D envelope equation can finally be written 

!!a + Kx s( ) a − εx
2

a3
−
Ksc

a
= 0

€ 

εx = 4εx,rms

◆  Effect of space charge on the equilibrium beam size           , in the 
smooth approximation 

€ 

a0

€ 

Kx = Qx0 / R( ) 2€ 

a = 2σ x
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1D TRANSVERSE ENVELOPE EQUATION (7/8) 

=> The equilibrium beam size is therefore found from 

Qx0

R
!

"
#

$

%
&
2

a0 −
Ksc

a0
−
εx
2

a0
3 = 0

 which yields 

€ 

a0
2 =

εx R
Qx0

κ + 1+ κ 2( ) κ =
Ksc R
2εx Qx0

◆  The beam size is significantly perturbed by the space-charge force 
when 

€ 

κ ≥ 1

◆  If the beam size becomes larger than the vacuum chamber aperture, 
there will be a beam loss  
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1D TRANSVERSE ENVELOPE EQUATION (8/8) 

€ 

a0
2 = a00

2 + Δ a00
2

€ 

κ <<1◆  For weak beam intensities, i.e.  

 with 

€ 

a00
2 =

εx R
Qx0

€ 

Δ a00
2 =κ a00

2

◆  The parameter         describes the beam size in the absence of 
space charge. Interpreting        as a perturbation on the single-
particle tune according to                                     , gives an 
expression for the shift of the single-particle tune due to space 
charge    € 

a00
a0

2 = εx R / Qx0 + ΔQx, linear shift
SC( )

ΔQx, linear shift
SC = −

Ksc R
2εx

€ 

Δ a00
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◆  Let’s come back to the general case, i.e. consider a beam with 
unequal transverse beam sizes => The envelope equations are given 
by (         must be replaced by                           in horiz. SC term) 

!!a + Kx a−
2Ksc

a+ b
−
εx
2

a3
= 0

!!b + Ky b−
2Ksc

a+ b
−
εy
2

b3
= 0

€ 

a = 2σ x

€ 

b = 2σ y

€ 

a a + b( ) / 2

€ 

a2

€ 

εx = 4εx,rms

€ 

εy = 4εy,rms

=> Both transverse planes have 
thus to be treated jointly for 
high-intensity beams due to 
space-charge coupling 

ΔQx, linear shift
SC = −

Ksc R
2

Qx0 a0 a0 + b0( )

2D TRANSVERSE ENVELOPE EQUATION (1/11) 
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2D TRANSVERSE ENVELOPE EQUATION (2/11) 

◆  The beam may execute some collective motion on top of equilibrium 
beam sizes          and       

€ 

a0

€ 

b0

◆  Let the horizontal and vertical beam sizes be                                        ,  

€ 

a s( ) = a0 − Δ a s( )

€ 

b s( ) = b0 + Δb s( )

 where the perturbations      and      are considered small with 
respect to the equilibrium sizes  

€ 

Δ a

€ 

Δb

◆  Linearizing yields  

€ 

Δ # # a + Ka Δ a = K Δb

€ 

Δ # # b + Kb Δb = K Δ a

Ka = 4Kx −
2Ksc 2a0 + 3b0( )
a0 a0 + b0( ) 2

Kb = 4Ky −
2Ksc 2b0 + 3a0( )
b0 a0 + b0( ) 2

K =
2Ksc

a0 + b0( ) 2

=> The transverse beam sizes execute coupled oscillations  
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2D TRANSVERSE ENVELOPE EQUATION (3/11) 

◆  The equilibrium beam sizes       and       are found from the following 
equations  

€ 

a0

€ 

b0

Kx a0 −
2Ksc

a0 + b0
−
εx
2

a0
3 = 0

Ky b0 −
2Ksc

a0 + b0
−
εy
2

b0
3 = 0

◆  Using the smooth approximation 

€ 

Kx = Qx0 / R( ) 2

€ 

Ky = Qy0 / R( )
2

€ 

Ka = Qa / R( ) 2

€ 

Kb = Qb / R( ) 2

 and assuming small tune shifts, yields 
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Qa = 2Qx0 + ΔQa = 2Qx0 −
Ksc R

2 2a0 + 3b0( )
2Qx0 a0 a0 + b0( ) 2

Qb = 2Qy0 + ΔQb = 2Qy0 −
Ksc R

2 2b0 + 3a0( )
2Qy0 b0 a0 + b0( ) 2

◆  The coupled equations can be re-written 

€ 

d2Δ a
dφ 2

+ Qa
2Δ a = K R2Δb

€ 

d2Δb
dφ 2

+ Qb
2Δb = K R2Δ a

€ 

φ =Ω0 t

2D TRANSVERSE ENVELOPE EQUATION (4/11) 
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2D TRANSVERSE ENVELOPE EQUATION (5/11) 

◆  Far from the coupling resonance          , the solutions of the 
homogeneous equations (of the coupled oscillations) are given by 

◆  The formula we are looking for is the one of the previous page, 
giving             …   

€ 

Δa = Δa0 e
jQa φ

€ 

Δb = Δb0 e
jQb φ

€ 

Qa =Qb

Qa
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 => 

Qa = 2Qx0 + ΔQa = 2Qx0 −
Ksc R

2 2a0 + 3b0( )
2Qx0 a0 a0 + b0( ) 2

Qa − 2Qx0 =
ΔQx, linear shift

SC
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2D TRANSVERSE ENVELOPE EQUATION (6/11) 

ΔQx, linear shift
SC = −

Ksc R
2

Qx0 a0 a0 + b0( )
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2D TRANSVERSE ENVELOPE EQUATION (7/11) 

ΔQx, spread
SC =

2Qx0 −Qa

1
2
3− σ x0

σ x0 +σ y0

#

$
%%

&

'
((

ΔQx, spread
SC = − ΔQx, linear shift

SC

=> 

Noted  
 

  on 1st slide 
Q2 x

Equilibrium  
horiz. rms beam 

size 

Equilibrium  
vertical rms beam 

size 
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2D TRANSVERSE ENVELOPE EQUATION (8/11) 

◆  This is the formula we were looking for! => It can also be written 

ΔQx, spread
SC =

2Qx0 −Q2 x

1
2
3− 1

1+
σ y0

σ x0

#

$

%
%
%
%

&

'

(
(
(
(

Only the ratio  
between the 2 transverse 
equilibrium beam sizes is 

needed 



Elias Métral, Space Charge meeting, CERN, 18/12/2014 

2D TRANSVERSE ENVELOPE EQUATION (9/11) 

◆  Close to the coupling resonance          , the solutions of the 
equations (of the coupled oscillations) are a bit more involved (see 
USPAS course) => The coupled oscillations can be solved by 
searching the normal (i.e. decoupled) modes (u,v) linked by a 
simple rotation € 

Qa =Qb

€ 

Δa
€ 

Δb

◆  The equations of the 2 normal modes can be found 

€ 

d2u
dφ 2

+Qu
2 u = 0

€ 

d2v
dφ 2

+Qv
2 v = 0

€ 

Δa
Δb
# 

$ 
% 

& 

' 
( =

cosα − sinα
sinα cosα
+ 

, 
- 

. 

/ 
0 
u
v

# 

$ 
% 

& 

' 
( 
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2D TRANSVERSE ENVELOPE EQUATION (10/11) 

 with (assuming small tune shifts) 

€ 

Qu = Qa −
C
2
tanα

€ 

Qv = Qb +
C
2
tanα

€ 

tan 2α( ) =
C
Δ

€ 

C =
R2 K
Q0

€ 

Δ =Qb −Qa

€ 

Qx0 ≈Qy0 ≈Q0

◆                                               =>   tan 2α( ) = 2 tanα
1− tan2α

tanα =
1
C

− Δ ∓ Δ2 +C2( )

=>   
C
2
tanα =

1
2

− Δ ∓ Δ2 +C2( )
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2D TRANSVERSE ENVELOPE EQUATION (11/11) 

=>   

Qu = Qa −
1
2

− Δ ∓ Δ2 +C2( )

Qv = Qb +
1
2

− Δ ∓ Δ2 +C2( )

◆  When                              , one recovers  Δ >> C Qu ≈ Qa Qv ≈ Qb

± depends on the sign  
of Δ => Should be the 

same sign as  Δ 


