HIGH PILE-UP TEST

G. Arduini, H. Bartosik, E. Bravin, P. Baudrenghien, J. Boyd, X. Buffat,
M. Giovannozzi, G. Iadarola, V. Kain, T. Lefevre, E. Métral, J.E. Muller,
Y. Papaphilippou, S. Redaelli, G. Rumolo, B. Salvant, C. Schwick,
E. Shaposhnikova, H. Timko, D. Valuch and J. Wenninger

- LMC Action: Propose ways to increase luminosity for a test fill, in case the crossing angle reduction is not already sufficient
 Requirements from the experiments
 - At least 2 trains of more than ~ 20 bunches (25 ns) + Few isolated high brightness bunches (with one non colliding)
 - Highest pile-up which can be done quickly (at least > 10%)
 - In 2017 => Trying to approach HL-LHC pile-up (140)
 - To be done soon (between MD4 and MD5)
- Potential from injectors
- LHC performance

	<i>𝕂</i> (x 10¹¹p/b)	ε (μm)	Number of bunches/ train	Bunch spacing (ns)
High brightness LHCINDIV	2.0	1.0	Up to 4	225
LHC25 standard	1.3	2.6	Up to 72	25
LHC25 BCMS	1.3	1.6	Up to 48	25
8b+4e	1.7	2.5	Up to 56	25
LHC50 standard	1.7	1.7	Up to 36	50
LHC50 BCMS	1.7	1.1	Up to 24	50
LHC25 PBC	1.3	1.0	Up to 32	25
8b+4e (from BCMS)	1.7	1.4	Up to 32	25

G. Rumolo and H. Bartosik, Injector beam requirements and options,

LBOC meeting, 8 April 2014

G. Rumolo et al., LIU protons: Baseline and Alternatives, Studies Plan, LHC

performance Workshop Chamonix 2014

G. Rumolo and H. Bartosik

	<i>𝕂</i> (x 10¹¹p/b)	ε (μm)	Number of bunches/ train	Bunch spacing (ns)
High brightness LHCINDIV	2.0	1.0	Up to 4	225
LHC25 standard	1.3	2.6	Up to 72	25
LHC25 BCMS	1.3	1.6	Up to 48	25
8b+4e	1.7	2.5	Up to 56	25
LHC50 standard	1.7	1.7	Up to 36	50
LHC50 BCMS	1.7	1.1	Up to 24	50
LHC25 PBC	1.3	1.0	Up to 32	25
8b+4e (from BCMS)	1.7	1.4	Up to 32	25

G. Rumolo and H. Bartosik, Injector beam requirements and options,

LBOC meeting, 8 April 2014

G. Rumolo et al., LIU protons: Baseline and Alternatives, Studies Plan, LHC

performance Workshop Chamonix 2014

G. Rumolo and H. Bartosik

	<i>ハ</i> (x 10 ¹¹ p/b)	ε (μm)	Number of bunches/ train	Bunch spacing (ns)
High brightness LHCINDIV	2.0	1.0	Up to 4	225
LHC25 standard	1.3	2.6	Up to 72	25
LHC25 BCMS	1.3	1.6	Up to 48	25
8b+4e	Can be i	ncreased	keepina	25
LHC50 standard	the brightness ~ constant			50
LHC50 BCMS	=> Ex: 3 1	50		
LHC25 PBC	1.3	1.0	Up to 32	25
8b+4e (from BCMS)	1.7	1.4	Up to 32	25

G. Rumolo and H. Bartosik, Injector beam requirements and options,

LBOC meeting, 8 April 2014

G. Rumolo et al., LIU protons: Baseline and Alternatives, Studies Plan, LHC

performance Workshop Chamonix 2014

G. Rumolo and H. Bartosik

	<i>𝕂</i> (x 10¹¹p/b)	ε (μm)	Number of bunches/ train	Bunch spacing (ns)
High brightness LHCINDIV	2.0	1.0	Up to 4	225
LHC25 standard	1.3	2.6	Up to 72	25
LHC25 BCMS	1.3	1.6	Up to 48	25
8b+4e	1.7	75	Up to 56	25
LHC50 standard	1.7		Up to 36	50
LHC50 BCMS	1.7		Up to 24	50
LHC25 PBC	Furthe	r optimiza	tion p 32	25
8b+4e (from BCMS)	should	allow ~ 1.	3 μm _{(0 32}	25

G. Rumolo and H. Bartosik, Injector beam requirements and options,

LBOC meeting, 8 April 2014

G. Rumolo et al., *LIU protons: Baseline and Alternatives, Studies Plan*, LHC

performance Workshop Chamonix 2014

G. Rumolo and H. Bartosik

POTENTIAL FROM INJECTORS

=> Beam parameters for some LHC beams at SPS extraction

- High intensity 25 ns beams tend to be very lossy in the SPS
- Trains of 24 bunches with 25 ns spacing => Maybe slightly larger intensities (1.5e11 p/b) accelerated on (2x) slower ramp (done with doublets in 2014, needs set up)
- LHC25 BCMS could be further optimised (large longitudinal emittance in PSB, better preservation of transverse emittance)
 Maybe 1.3 um (potential gain of ~ 15% in brightness)
- LHCINDIV could be injected in trains of 4x4 (set up needed in the four PSB rings)
- LHC25 PBC was produced in the PS in 2014 but never taken downstream => Needs set up
- 8b+4e starting from BCMS was never tested

LHC performance: bunch length and RF

- Bunch length for 2 10¹¹ p/b
 - 12 MV => ~ 0.97 ns
 - 10 MV => ~ 1 ns
 - 16 MV => ~ 0.92 ns
- Bunch length for 3 10¹¹ p/b
 - 15 MV => ~ 1 ns
 - RF set up for intensities
 from 4 10¹⁰ p/b to 2.1 10¹¹ p/b

=> Preferable to stay with 2 10^{11} p/b. If 3 10^{11} p/b is absolutely required, RF team could shift the range to 6 10^{10} p/b - 3.15 10^{11} p/b and inject fat pilots

LHC performance: transverse emittance

- Injection to Stable Beams: the global picture (see G. ladarola, LBOC 27/09/16)
 - Horizontal emittance larger than vertical by ~ 0.5 μm throughout the cycle
 - Largest increase observed in the energy ramp (~ 0.5 μm independent on the injected emittances)

"Typical" emittances before TS2 (for beam 1 and beam 2)

	Injection	Collision			
Horizontal	1.7 um 1.7 um	2.5 um 2.4 um			
Vertical	1.5 um 1.4 um	2.0 um 1.7um			
Average ~ 2.2 μm					
Elias Métral, LMC, CERN, 05/10/2016		8			

LHC performance: bunch intensity

• Should be OK if

- ADT with high intensity settings and nominal gain
- LOF ~ 500 A
- Q' ~ 15
- Coupling well corrected (|C⁻| < 0.001-0.002)</p>

LHC performance: instrumentation

Instrumentation should be OK

FBCT is not well calibrated for the high intensities (> 2 10¹¹ p/b)

LHC performance: summary of possible pile-up increase

	LHC25 BCMS (before Xing angle change)	LHC25 BCMS now	LHC25 BCMS pushed (~ 1.5 µm from SPS)	LHCINDIV (2 10 ¹¹ p/b and 1 µm from SPS)	LHCINDIV (3 10 ¹¹ p/b and 1.5 µm from SPS)
Full crossing angle [µrad]	370	280	280	280	280 / 0
Bunch intensity [10 ¹¹ p/b]	1.1	1.1	1.3	2.0	3.0
Rms Norm. transverse emittance [µm]	2.2	2.2	2.2 / 2.5	2	2.5
4σ bunch length [ns]	1	1	1	1	1
Computed pile-up	38	44 (+ 16 %)	62 / 56 (+ 63 / 47 %)	158 (+ 316 %)	299 / 397 (+ 689 / 945 %)
Observed pile-up (LPCs)	ATLAS: ~ 39 CMS: ~ 42	ATLAS: ~ 43 CMS: ~ 46			