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TRANSVERSE BEAM DYNAMICS 

  Introduction 
  Multipole field expansion 
  Equations of motion (general & Hill’s equation and solution) 

  Matrix formalism and Twiss parameters 
  Thin lens approximation and FODO cell   

  Beam emittance, envelope and divergence 

  Dispersion 
  Normalized Floquet’s coordinates 

  Chromaticity and its correction 
  Nonlinearities and resonances 
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 Single-particle trajectory  

 Circular design orbit   One particle  

In the middle of the 
vacuum chamber 

  The motion of a charged particle (proton) in a beam transport channel 
or a circular accelerator is governed by the LORENTZ FORCE 

  

€ 

 
F = d  p 

d t
= e

 
E +  v ×

 
B ( )

  The motion of particle beams under the influence of the Lorentz force 
is called BEAM OPTICS 
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  The Lorentz force is applied as a 

  BENDING FORCE (using DIPOLES) to guide the particles 
along a predefined ideal path, the DESIGN ORBIT, on which – 
ideally – all particles should move 

  FOCUSING FORCE (using QUADRUPOLES) to confine the 
particles in the vicinity of the ideal path, from which most 
particles will unavoidably deviate 

  LATTICE = Arrangement of magnets along the design orbit 

  The ACCELERATOR DESIGN is made considering the beam as a 
collection of non-interacting single particles  
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  BEAM RIGIDITY 
(in useful units) 

€ 

Bρ Tm[ ] = 3.3356 p0 GeV /c[ ]

    Magnetic field Beam momentum Curvature radius 
of the dipoles 

⇒ A particle, with a constant energy, describes a circle in equilibrium 
between the centripetal magnetic force and the centrifugal force 

Constant force in x 
and 0 force in y 

  Beam 

€ 

e v B = m v 2

ρ
⇒ 

€ 

B ρ =
p
e

DIPOLE  
= Bending 

magnet 
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  LEP vs LHC magnets (in same tunnel) => A change in technology 

LEP LHC 

ρ [m] 3096.175 2803.95 

p0 [GeV/c] 104 7000 

B [T] 0.11 8.33 

Room-temperature 
coils 

Superconducting 
coils 

  As the machine has to be closed 

€ 

ld = ρ ϑ d

€ 

2 π = Nd ϑ d

Total number  
of dipoles Bending angle 

of a dipole 

Length of  
a dipole 
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Linear force in x&y   Beam 

… and SEXTUPOLES (6 poles), OCTUPOLES (8 poles), etc. 

QUADRUPOLE 
= Focusing 

magnet 
    In x (and Defocusing  
in y) ⇒ F-type. Permutating   
     the N- and S- poles  
        gives a D-type 
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  (fast) EXTRACTION from a ring 

KICKER  
(fast dipole < 1 turn) 

SEPTUM  
(field ≠ 0 between the 2 blades) 

  (fast) INJECTION into a ring => Reverse process 
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  In a vacuum environment in the vicinity of the design orbit, the 
following Maxwell equations hold 

                             => 

  Assumption that the field does not vary along the z-axis (as is the 
case for long magnets far from the ends) and that there are only 
transverse field components (no solenoid field)  

€ 

∇ ⋅ B = 0

€ 

∇ × B = 0

€ 

∇ × B = 0

€ 

B = − ∇U With U a magnetic  
scalar potential 

€ 

ΔU ≡ ∇2U = 0 Laplace equation 
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 => 

  The real and imaginary parts are 2 independent solutions of the 
Laplace equation and they differentiate between 2 classes of 
magnet orientation  

€ 

U x , y( ) = Un x , y( )
n = 1

∞

∑

€ 

Un x , y( ) = −
p
e
An

n!
x + j y( )n

Decomposition of the 
magnetic potential as a 

sum of independent 
multipole terms  
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  The imaginary part has the so-called mid-plane symmetry, i.e. 

and the magnetic field components for the nth order multipoles are 

€ 

Im Un x , y( )[ ] = − Im Un x , − y( )[ ]

€ 

Bnx x , y( ) = −
∂
∂ x

Im Un x , y( )[ ]

=
p
e
An −1( )m xn − 2m − 2

n − 2 m − 2( ) !m = 0

n − 2( ) / 2

∑ y 2m +1

2 m + 1( ) !

€ 

Bny x , y( ) = −
∂
∂ y

Im Un x , y( )[ ]

=
p
e
An −1( )m xn − 2m −1

n − 2 m −1( ) !m = 0

n −1( ) / 2

∑ y 2m

2 m( ) !
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•  The mid-plane symmetry yields  

€ 

Bnx x , y( ) = − Bnx x , − y( )

€ 

Bny x , y( ) = Bny x , − y( )

•  There is no horizontal field in the mid-plane,                          , 
and a particle traveling in the horizontal mid-plane will remain 
in this plane 

•  The magnets are called UPRIGHT or REGULAR magnets 

•  The coefficient An is called the (normalized) multipole strength 
parameter 

€ 

Bnx x , 0( ) = 0

€ 

An =
e
p
∂ n−1

∂ x n−1 Bny = −
e
p

−1( ) n / 2 ∂
n−1

∂ y n−1 Bnx
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  The magnets derived from the real solution of the potential are 
called ROTATED or SKEW magnets and the magnetic field 
components for the nth order skew multipoles are   

€ 

Bnx x , y( ) = −
∂
∂ x

Re Un x , y( )[ ]

=
p
e
An −1( )m xn − 2m −1

n − 2 m −1( ) !m = 0

n −1( ) / 2

∑ y 2m

2 m( ) !

€ 

Bny x , y( ) = −
∂
∂ y

Re Un x , y( )[ ]

=
p
e
An −1( )m xn − 2m

n − 2 m( ) !m = 0

n / 2

∑ y 2m −1

2 m −1( ) !
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•  The coefficient An is called the (normalized) skew multipole 
strength parameter 

•  The skew magnets differ from the regular ones only by a 
rotation about the z-axis by an angle (where n is the order of 
the multipole) € 

An =
e
p
∂ n−1

∂ x n−1 Bnx =
e
p

−1( ) n / 2 ∂
n−1

∂ y n−1 Bny

€ 

φn =
π
2 n
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  Regular and skew 
multipole fields for 
the first 4 orders 

€ 

A2 = K

€ 

A3 = S

€ 

A4 =O

€ 

A2 = K

€ 

A3 = S

€ 

A4 =O
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  G e n e r a l 
equations of 
motion for a 
c h a r g e d 
particle in a 
magnetic field 
(in absence of 
electric field)  € 

′ ′ x − ′ ′ σ 
′ σ 
′ x = kx h − 1+ δ( ) −1 e

p0
′ σ h By − ′ y Bt( )

€ 

′ ′ y − ′ ′ σ 
′ σ 
′ y = ky h + 1+ δ( ) −1 e

p0
′ σ h Bx − ′ x Bt( )

with 

€ 

h =1+ kx x + ky y

€ 

′ σ = h2 + ′ x 2 + ′ y 2

€ 

ρx ,y s( ) =
1

kx ,y s( )

Particle trajectory 

€ 

δ =
p − p0
p0

=
Δp
p0

On the design orbit,  
x = x’ = y = y’ = δ = 0 

€ 

′ x =
dx
ds
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  General equations of motion expanded to the 2nd order in x, y and δ 
(without tangential fields) 

  If we consider the on-momentum particle (δ = 0) and if we 
assume that the design orbit lies only in the horizontal plane, 
then the equations of motion simplifies to   

€ 

′ ′ x + K0 +
1
ρx
2

 

 
 

 

 
 x = K 0 y +

δ
ρx

−
δ 2

ρx

+ K0 +
2
ρx
2

 

 
 

 

 
 x δ −

1
2

S0 x 2 − y 2( ) − K 0 y δ + S0 x y

€ 

′ ′ y − K0 −
1
ρy
2

 

 
  

 

 
  y = K 0 x +

δ
ρy

−
δ 2

ρy

− K0 −
2
ρy
2

 

 
  

 

 
  y δ +

1
2

S0 x 2 − y 2( ) − K 0 x δ + S0 x y

€ 

′ ′ x + K0 +
1
ρx
2

 

 
 

 

 
 x = K 0 y − 1

2
S0 x 2 − y 2( ) + S0 x y

€ 

′ ′ y − K0 y = K 0 x +
1
2

S0 x 2 − y 2( ) + S0 x y
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  If we consider now the on-momentum particle (δ = 0), if we 
assume that the design orbit lies only in the horizontal plane, 
and if we consider only the presence of dipoles and normal 
(regular) quadrupoles, then the equations of motion simplifies to 
the so-called HILL’S EQUATION 

€ 

′ ′ x + K0 +
1
ρx
2

 

 
 

 

 
 x = 0

€ 

′ ′ y − K0 y = 0 Periodic function of the  
s-coordinate with period L = C / Ncell, 

where C is the accelerator 
circumference and Ncell the number of 

“cells” repeated  

=> 

€ 

′ ′ u + K s( ) u = 0

u = x or y 

Gradient focusing Weak sector  
magnet focusing 
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Reminder on light optics 

Principle of focusing for light 

Principle of STRONG FOCUSING for light 

=> Focusing in both  
planes 
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Coming back to the case of a strong focusing lattice 

€ 

′ ′ u ds
0

l

∫ = ′ u l( ) − ′ u 0( ) = tanθ

€ 

K s( ) u ds
0

l

∫ ≈ K u l

=> 

€ 

tanθ ≈ − K u l

By analogy with the expression of the focal length of a glass lens, we 
define the focal length of a quadrupole 

€ 

tanθ = −
u
f

=> 

€ 

1
f

= ± K0 l

Assuming K (s)  
= K0 > 0 

+ in focusing plane and  
– in defocusing plane 
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  The solution of the Hill’s equation is a pseudo-harmonic oscillation 
with varying amplitude and frequency called BETATRON 
OSCILLATION 

with 

  Phase advance per period or cell (of length L) 

€ 

u s( ) = a β s( ) cos µ s( ) −ϕ[ ]

€ 

µ s( ) =
d t
β t( )s0

s

∫

€ 

1
2
β ′ ′ β −

1
4

′ β 2 + K s( ) β 2 =1

Betatron function 

Phase function 

€ 

µ =
d t
β t( )s

s + L

∫
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  The oscillation’s local frequency f (s) is related to the phase function 
by 

  The number of betatron oscillations executed by particles traveling 
once around the machine circumference C is called the BETATRON 
TUNE and is given by  

€ 

′ µ s( ) = 2 π f s( )

€ 

Q = f t( ) d t
s

s +C

∫

=> 

€ 

Q =
Ncell µ
2 π

=
1
2 π

d t
β t( )s

s +C

∫
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  Case of a drift space (where K = 0) 

 => The solution is (with β (0) = β0) 

  When                    , the betatron function reduces to 

€ 

1
2
β ′ ′ β −

1
4

′ β 2 + K s( ) β 2 =1

€ 

1
2
β ′ ′ β −

1
4

′ β 2 =1=> 

€ 

β s( ) = β0 + ′ β 0 s +
1
β0

1+
′ β 0
2

4
 

 
 

 

 
 s 2

€ 

′ β 0 = 0

€ 

β s( ) = β0 1+
s
β0

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

Case of a symmetric point, 
 as a LHC IP 
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  The betatron phase  
advance is given by 

€ 

µ s( ) =
d t
β t( )0

s

∫ = arctan s
β*
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  Using the matrix formalism, one can write 

with 

€ 

u s( )
′ u s( )

 

 
 

 

 
 = M s / s0( )

u s0( )
′ u s0( )

 

 
 

 

 
 

€ 

M s / s0( ) =

β s( )
β0

cos Δµ s( ) + α0 sin Δµ s( )[ ] β s( ) β0 sin Δµ s( )

α0 −α s( )
β s( ) β0

cos Δµ s( ) −
1+ α s( )α0

β s( ) β0
sin Δµ s( ) β0

β s( )
cos Δµ s( ) −α s( ) sin Δµ s( )[ ]

 

 

 
 
 
 
 

 

 

 
 
 
 
 

€ 

α s( ) = −
′ β s( )
2

€ 

Δµ s( ) = µ s( ) − µ s0( )

Transfer matrix  
between s0 and s 
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  Effect of the kick of a dipole => Consider a small dipole placed 
at s0 yielding an angular kick 

The motion of a particle traveling on the design orbit for s > s0 
(before it is 0) is (from the previous general matrix formula) 

€ 

ϑ =
l
ρ

=
e
p
ΔB l

€ 

ϑ

€ 

x s( ) = β s( ) β0 sin µ s( ) − µ0[ ]ϑ

€ 

β s0( ) = β0

€ 

µ s0( ) = µ0

€ 

s

€ 

s0
€ 

l
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  The transfer matrix over one period = TWISS MATRIX and is given by 

with 

  Determinant of the Twiss matrix 

  Trace of the Twiss matrix 

€ 

M s( ) ≡ M s + L / s( ) =
cos µ + α s( ) sin µ β s( ) sin µ

− γ s( ) sin µ cos µ −α s( ) sin µ

 

 
 

 

 
 

€ 

γ s( ) =
1+ α s( )2

β s( )

€ 

M s( ) =1

€ 

Tr M s( )[ ] = 2 cos µ

          ,                   and                    are called TWISS PARAMETERS 

General stability criterion 
for a Twiss matrix  
=> | Tr [ M (s) ] | ≤ 2 

€ 

β s( )

€ 

α s( )

€ 

γ s( )
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  Hill’s equation with piecewise periodic constant coefficients => 
Assume K (s) to be a constant K over a distance l between the 
azimuthal locations s0 and s1: > 0, < 0 or = 0 

  For K > 0 

  For K < 0 

  For K = 0 (drift space)  

€ 

M s1 / s0( ) =
cos K l( ) 1

K
sin K l( )

− K sin K l( ) cos K l( )

 

 

 
 
 

 

 

 
 
 

€ 

M s1 / s0( ) =
cosh K l( ) 1

K
sinh K l( )

K sinh K l( ) cosh K l( )

 

 

 
 
 

 

 

 
 
 

€ 

M s1 / s0( ) =
1 l
0 1
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  If the cell is made of N elements having transfer matrices M1, M2, …, 
MN 

  => 

  Noting mij (s0) the components of the matrix M (s0), the Twiss 
parameters at the reference point s0 are given by     

€ 

Mk = M sk / sk−1( )

  

€ 

M s0( ) ≡ M s0 + L / s0( ) = MN MN −1 M2 M1

€ 

β s0( ) =
m12 s0( )
sin µ

€ 

γ s0( ) = −
m21 s0( )
sin µ
€ 

α s0( ) =
m11 s0( ) − m22 s0( )

2 sin µ

€ 

cos µ =
1
2

m11 s0( ) + m22 s0( )[ ]
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  Thin lens approximation                                    with  

=> Transfer matrix of a thin quadrupole is 

€ 

K l <<1

€ 

K > 0

€ 

l→ 0 with  K l = constant

  

€ 

M l / 0( ) =
1 0
 K l 1
 

 
 

 

 
 =

1 0
 f −1 1
 

 
 

 

 
 

- => Horizontally focusing quadrupole 
+ => Horizontally defocusing quadrupole 
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  Transfer matrix of a symmetric thin-lens FODO cell   

€ 

MFODO 2 L / 0( ) =
1 L
0 1
 

 
 

 

 
 

1 0
f −1 1

 

 
 

 

 
 
1 L
0 1
 

 
 

 

 
 

1 0
− f −1 1
 

 
 

 

 
 

=
1− L

f
−
L2

f 2
2 L +

L2

f

−
L
f 2

1+
L
f

 

 

 
 
  

 

 

 
 
  

s 

L L 

€ 

QF

€ 

QD
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  By comparison with the general form of a Twiss matrix 

  
one obtains 

and                                                                 => 

              => 

€ 

M s( ) =
cos µ + α s( ) sin µ β s( ) sin µ

− γ s( ) sin µ cos µ −α s( ) sin µ

 

 
 

 

 
 

€ 

βQF sin µ = 2 L +
L2

f
= 2 L 1+

L
2 f

 

 
 

 

 
 

€ 

Tr M s( )[ ] = 2 cos µ = 2 − L2

f 2

€ 

L
2 f

= sin µ
2

 

 
 

 

 
 

€ 

βQF = 2 L
1+ sin µ

2
 

 
 

 

 
 

sin µ
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The betatron function at the defocusing quadrupole QD can be 
found by considering the DOFO cell instead of a FODO cell 

€ 

βQD = 2 L
1− sin µ

2
 

 
 

 

 
 

sin µ

  Stability of the FODO cell requires 

<=>                    : the stability of the FODO cell is thus obtained 
for distances L between the quadrupoles up to twice their 
focal length 

€ 

cos µ ≤1

€ 

f ≥
L
2
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  An invariant i.e. a constant of motion, (called COURANT-SNYDER 
INVARIANT) can be found from the solution of the Hill’s equation 

=> Equation of an ellipse (motion for one particle) in the phase 
space plane (u, u’), with area π a2 € 

u s( ) = a β s( ) cos µ s( ) −ϕ[ ]

€ 

γ s( ) u s( ) 2 + 2α s( ) u s( ) ′ u s( ) + β s( ) ′ u s( ) 2 = a 2

“Single-particle” emittance: ε = a2 



Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013                                                                                                                                        /74 34 

=> The shape and orientation of the phase plane ellipse evolve along 
the machine (depending on the Twiss parameters), but not its area 

€ 

x s( )

Envelope 

Divergence 
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  Transformation rule for phase ellipses through the lattice 

where C (s) and S (s) are 2 independent solutions of Hill’s equation 
satisfying the particular initial conditions: C (s0) = S’ (s0) = 1 and     
C’ (s0) = S (s0) = 0     

=> 

€ 

u s( )
′ u s( )

 

 
 

 

 
 =

C s( ) S s( )
′ C s( ) ′ S s( )

 

 
 

 

 
 

u s0( )
′ u s0( )

 

 
 

 

 
 

Cosine-like 
solution 

Sine-like 
solution 

€ 

β s( )
α s( )
γ s( )

 

 

 
 
 

 

 

 
 
 

=

C s( ) 2 −2S s( )C s( ) S s( ) 2

−C s( ) ′ C s( ) ′ S s( )C s( ) + S s( ) ′ C s( ) −S s( ) ′ S s( )
′ C s( ) 2 −2 ′ S s( ) ′ C s( ) ′ S s( ) 2

 

 

 
 
 

 

 

 
 
 

β s0( )
α s0( )
γ s0( )

 

 

 
 
 

 

 

 
 
 

For K ( s ) = K > 0: 

€ 

C s( ) = cos K s( )

€ 

S s( ) = sin K s( ) / K
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Stroboscopic representation or POINCARÉ MAPPING  

Depends on the TUNE  
(reminder: number of betatron 

oscillations per machine  
revolution) 
€ 

x s0( )
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  BEAM EMITTANCE = Measure of the spread in phase space of the 
points representing beam particles ⇒ 3 definitions 

   

1) In terms of the phase plane “amplitude” aq enclosing q % of 
the particles 

2)  In terms of the 2nd moments of the particle distribution 

3) In terms of σx the standard deviation of the particle 
distribution in real space (= projection onto the x-axis) 

     
        

[mm mrad] or [µm] 

Determinant of the 
covariance matrix 
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Beam envelope 

Beam divergence 

Emittance 

The β-function reflects the size of  
the beam and depends only on the lattice 
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  NORMALIZED BEAM EMITTANCE Relativistic factors 

⇒ The normalized emittance is conserved during acceleration 
(in the absence of collective effects…)  

  ADIABATIC DAMPING:  As βr γr increases proportionally to the 
particle momentum p, the (physical) emittance  decreases as 1 / p 

  However, many phenomena may affect (increase) the emittance 

  An important challenge in accelerator technology is to preserve 
beam emittance and even to reduce it (by COOLING) 

  MACHINE mechanical (i.e. from the vacuum chamber) ACCEPTANCE 
or APERTURE = Maximum beam emittance 
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  In practice, particle beams have a finite dispersion of momenta 
about the ideal momentum p0. A particle with momentum p ≠ p0 will 
perform betatron oscillations around A DIFFERENT CLOSED ORBIT 
from that of the reference particle 

€ 

′ ′ x + K0 +
1
ρx
2

 

 
 

 

 
 x =

δ
ρx

€ 

′ ′ y − K0 −
1
ρy
2

 

 
  

 

 
  y =

δ
ρy

=> 

€ 

′ ′ u + K s( ) u =
δ

ρ s( )

=> 

€ 

u s( ) = uδ s( ) + uβ s( )

Displacement of the closed orbit 
for the off-momentum particle from the on-

momentum particle 

Betatron oscillation around  
the off-momentum orbit 



Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013                                                                                                                                        /74 41 

€ 

uδ s( ) = D s( ) δ is called the DISPERSION FUNCTION   

  The dispersion function satisfies the equation 

and can be found to be given by 

€ 

′ ′ D + K s( ) D =
1

ρ s( )

€ 

D s( ) =
β s( )

2 sin π Q( )
dt

β t( )
ρ t( )

cos µ t( ) − µ s( ) − πQ[ ]
s

s+C

∫

€ 

D s( )
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=> i) The dispersion function depends on all the bending magnets in 
the accelerator 
ii) To get stable off-momentum orbits, the machine tune Q must not 
be an integer (otherwise resonance effect will occur) 

  Applying the same method as the one used for betatron 
oscillations, the dispersion function can be derived by applying 
the matrix formalism (instead of using the previous formula) => 
3 × 3 transfer matrices  

  

€ 

M s0( ) ≡ M s0 + L / s0( ) = MN MN −1 M2 M1

=

m11 s0( ) m12 s0( ) m13 s0( )
m21 s0( ) m22 s0( ) m23 s0( )
0 0 1

 

 

 
 
 

 

 

 
 
 

€ 

u s( )
′ u s( )
δ

 

 

 
 
 

 

 

 
 
 

= M s / s0( )
u s0( )
′ u s0( )
δ

 

 

 
 
 

 

 

 
 
 

Usual 2 × 2 transfer 
matrix for betatron 

oscillations  
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 It can be shown that 

=> The dispersion function and its derivative can be found at any 
location s0 around the ring  

€ 

D s( )
′ D s( )
1

 

 

 
 
 

 

 

 
 
 

=

m11 s0( ) m12 s0( ) m13 s0( )
m21 s0( ) m22 s0( ) m23 s0( )
0 0 1

 

 

 
 
 

 

 

 
 
 

D s( )
′ D s( )
1

 

 

 
 
 

 

 

 
 
 

€ 

D s0( ) =
m13 s0( ) 1− m22 s0( )[ ] + m12 s0( ) m23 s0( )

2 − m11 s0( ) − m22 s0( )

€ 

′ D s0( ) =
m23 s0( ) 1− m11 s0( )[ ] + m21 s0( ) m13 s0( )

2 − m11 s0( ) − m22 s0( )
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  Example of a dipole  
 sector magnet 

€ 

K s( ) =
1
ρ0
2

=> 

€ 

C s( ) = cos s − s0
ρ0

 

 
 

 

 
 

€ 

S s( ) = ρ0 sin
s − s0
ρ0

 

 
 

 

 
 € 

ϑ =
l
ρ0
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=> 

€ 

M s1 / s0( ) =

cosϑ ρ0 sinϑ ρ0 1− cosϑ( )
−
sinϑ
ρ0

cosϑ sinϑ

0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

  Note that the 3 × 3 transfer matrix for synchrotron magnets (= 
combined-function dipole-quadrupole magnets) can be derived 
similarly, replacing               by               where  

€ 

1 / ρ0

€ 

K

€ 

K = K0 +
1
ρ0
2
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  Example of the thin-lens FODO lattice with cell length 2 L, in which 
the drift spaces are replaced by dipole sector magnets of length L 
and bending radius ρ0   

€ 

MFdipDdip 2 L / 0( ) = Mdip MQD Mdip MQF

s 

L L 

€ 

QF

€ 

QD

€ 

dip

€ 

dip

  

€ 

MQF ,D =

1 0 0
 f −1 1 0
0 0 1

 

 

 
 
 

 

 

 
 
 

€ 

Mdip =

1 L L2

2ρ0
0 1 L

ρ0
0 0 1
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€ 

MFdipDdip 2 L / 0( ) =

1− L
f
−
L2

f 2
2 L +

L2

f
L2

2ρ0
4 +

L
f

 

 
 

 

 
 

−
L
f 2

1+
L
f

L
2ρ0

4 +
L
f

 

 
 

 

 
 

0 0 1

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

=> 

  Using the definition of the dispersion function, it can be computed 
at the position s0 (of the focusing quad QF) 

  Similarly, the dispersion in the defocusing quad QD is derived by 
inverting the QF and QD in the cell  

€ 

DQF =
4 f 2

ρ0
1+

L
4 f

 

 
 

 

 
 

€ 

DQD =
4 f 2

ρ0
1− L

4 f
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  Example of LHC optics for the Interaction Point 5 (CMS) in collision 

MAD program 



Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013                                                                                                                                        /74 49 

  BETATRON MATCHING = The phase space ellipses at the injection 
(ejection) point of the circular machine, and the exit (entrance) of the 
beam transport line, should be homothetic. To do this, the Twiss 
parameters are modified using quadrupoles. If the ellipses are not 
homothetic, there will be a dilution (i.e. a BLOW-UP) of the emittance  

  DISPERSION MATCHING = Dx and D’x should be the same at the 
injection (ejection) point of the circular machine, and the exit 
(entrance) of the beam transport line. If there are different, there will 
be also a BLOW-UP, but due to a missteering (because the beam is 
not injected on the right orbit) 

Courtesy D. Möhl 
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  Normalized (Floquet’s) coordinates 

 => Perturbed (e.g. horizontal) Hill’s equation  

 becomes 

€ 

′ ′ x + K s( ) x = p x ,y ,s( )

General perturbation 
term 

€ 

˙ ̇ η + Q2 η =Q2 β 3 / 2 p η,φ( )

€ 

˙ η =
dη
dφ

€ 

η =
x

βx s( )

€ 

φ =
1
Qx ,y

dt
βx ,y t( )s0

s

∫

€ 

ζ =
y

βy s( )
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  When the perturbation vanishes => 

            => 

•  Phase advance 

•  Particle trajectory in phase space  

€ 

˙ ̇ η + Q2 η = 0

Harmonic oscillator  
with frequency Q 

€ 

η φ( ) = a cos µ φ( ) −ϕ[ ]

€ 

µ φ( ) =Q φ =
d t
β t( )s0

s

∫

€ 

η 2 +
dη
dµ

 

 
 

 

 
 

2

= a 2
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=> The particle trajectory in the phase plane ( η , dη / dµ) is thus a 
circle of radius equal to the amplitude a of the oscillation 

=> The phase advances by 2 π every betatron oscillation or by 2 π 
Q every machine revolution    
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  Chromaticity 
  Equations of motion of an off-momentum particle (without skew 

magnets and sextupoles and in a zero-curvature region) 

€ 

′ ′ x + K0 1− δ( ) x = 0

€ 

′ ′ y − K0 1− δ( ) y = 0

  Chromaticity = Variation of the tune  with the momentum 

  Relative chromaticity  

€ 

′ Q =
ΔQ
δ

€ 

ξ =
′ Q 

Q
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€ 

K0 =
e
p0

∂By

∂ x

€ 

K δ( ) =
e
p
∂By

∂ x

=> 

€ 

1
f δ( )

=
K0 l
1+ δ

  Once the particles are spread by momentum in a region with 
dispersion, we can apply focusing corrections depending on the 
momentum using a sextupole magnet 

SEXTUPOLE =  
1st nonlinear magnet 

Particles approach 
the reader 
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=> The sextupole is focusing for the higher-momentum particles 
and defocusing for the lower-momentum particles => It can be 
used to correct the chromatic focusing errors in a region with 
non-zero dispersion 

  Let’s consider the equations of motion including the 
contributions from the regular sextupole magnets 

•  Using                                                         yields  
€ 

′ ′ x + K0 1− δ( ) x = −
1
2

S0 x 2 − y 2( )

€ 

′ ′ y − K0 1− δ( ) y = S0 x y

€ 

x s( ) = xδ s( ) + xβ s( )

€ 

y s( ) = yβ s( )
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€ 

′ ′ x β + K0 xβ = K0 − S0 Dx( ) xβ δ

€ 

′ ′ y β − K0 yβ = − K0 − S0 Dx( ) yβ δ

(discarding the terms which do not depend on the betatron motion, 
because they do not contribute to the chromatic tune shift, and 
ignoring the non-chromatic terms of 2nd order) 

•  Introducing the normalized coordinates, yields 
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€ 

pxδ φ( ) =Qx βx
2 K0 φ( ) − S0 φ( ) Dx[ ] δ

€ 

pyδ φ( ) =Qy βy
2 K0 φ( ) − S0 φ( ) Dx[ ] δ

Periodic functions with period 2 π 

€ 

˙ ̇ η + Qx
2 η =Qx pxδ φ( )η

€ 

˙ ̇ ζ + Qy
2 ζ = −Qy pyδ φ( ) ζ
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•  Expanding the perturbations in Fourier series yields 

€ 

pxδ φ( ) = ˆ p xδ m( ) e j mφ

m = −∞

+∞

∑

= ˆ p xδ 0( ) + ˆ p xδ m( ) e j mφ

m≠ 0
∑

€ 

ˆ p xδ m( ) =
1

2π
dφ pxδ φ( ) e − j mφ

0

2π

∫with 

Fourier coefficients 
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=> 

€ 

˙ ̇ η + ˜ Q x
2 φ( )η = 0 with 

€ 

˜ Q x
2 φ( ) = Qx

2 1−
ˆ p xδ 0( )

Qx

 

 
 

 

 
 −Qx ˆ p xδ m( ) e j mφ

m≠ 0
∑

Averages to 0  
over 1 period 2 π 

•  Averaging over a period gives the static tune shift due to 
chromatic effect 

€ 

˙ ̇ η + Qx + ΔQx( ) 2
η = 0 with 

€ 

ΔQx = −
ˆ p xδ 0( )

2
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=> 

€ 

ΔQx = −
1
4π

dφ pxδ φ( )
0

2π

∫

= −
δ
4π

d s βx s( ) K0 s( ) − S0 s( ) Dx s( )[ ]
s0

s0 +C

∫

€ 

ΔQy =
δ
4π

d s βy s( ) K0 s( ) − S0 s( ) Dx s( )[ ]
s0

s0 +C

∫

=> 

€ 

ξx = −
1

4πQx

d t βx t( ) K0 t( ) − S0 t( ) Dx t( )[ ]
s

s+C

∫

€ 

ξy = +
1

4πQy

d t βy t( ) K0 t( ) − S0 t( ) Dx t( )[ ]
s

s+C

∫
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•  The contribution to chromaticity arising from pure 
quadrupole elements (and also pure dipoles) is called 
natural chromaticity => The natural chromaticities of a 
lattice are 

€ 

ξx
natural = −

1
4πQx

d t βx t( ) K0 t( )
s

s+C

∫

€ 

ξy
natural = +

1
4πQy

d t βy t( ) K0 t( )
s

s+C

∫
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  Natural chromaticity  
 of a FODO cell 

s 

L L 

€ 

QF

€ 

QD

€ 

ξx
natural = −

1
4πQx

d t βx t( ) K0 t( )
s

s+C

∫

= −
1

4πQx

βx
QF d s KQF∫ + βx

QD d s KQD∫
 

 
  

 

 
  

= −
1

4πQx

βx
QF KQF l + βx

QD KQD l( )
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€ 

ξx
natural = −

1
4πQx f

βx
QF − βx

QD( )

=> 

with 

€ 

1
f

= KQF l = − KQD l

  We saw previously that  

€ 

βx
QF = 2 L

1+ sin µ
2

 

 
 

 

 
 

sin µ

€ 

βx
QD = 2 L

1− sin µ
2

 

 
 

 

 
 

sin µ

=> € 

1
f

=
2
L
sin µ

2
 

 
 

 

 
 

€ 

ξx
natural = −

1
πQx

tan µ
2
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  If the full lattice is composed of  
Ncell similar FODO cells 

Furthermore,                               => 

   Similarly  

€ 

ξx
natural = −

Ncell

πQx

tan µ
2

 

 
 

 

 
 

€ 

Qx =
Ncell µ
2 π

€ 

ξx
natural = −

2
µ
tan µ

2
 

 
 

 

 
 

€ 

ξy
natural = −

2
µ
tan µ

2
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  The natural chromaticities of a synchrotron made up of FODO 
cells are negative. For instance, if the phase advance per cell 
is π / 2, then 

€ 

ξx
natural = ξy

natural = −
4
π
≈ −1.3
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  More generally, the natural chromaticities are always negative since 
for the higher-momentum particles the focusing is less effective 
and then the tune is reduced  

  The control of the chromaticity (using SEXTUPOLE magnets) is 
very important for 2 reasons 

  Avoid shifting the beam on resonances due to changes induced 
by chromatic effects 

  Prevent some transverse coherent (head-tail) instabilities 

=> CHROMATICITY CORRECTION / CONTROL USUALLY 
REQUIRED 
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  Chromaticity correction 
  The chromaticity equations suggest the insertion of sextupoles 

close to each quadrupole, where the dispersion function is non-
zero, in order to correct the chromaticity 

  
  
         => 

  However, such localized corrections are seldom feasible  

€ 

ξx = −
1

4πQx

d t βx t( ) K0 t( ) − S0 t( ) Dx t( )[ ]
s

s+C

∫

€ 

S0 ls =
K0 lQ
Dx

Length of sextupole 

Dispersion at the 
sextupole location 

Length of quadrupole 



Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013                                                                                                                                        /74 68 

  A standard way of adjusting both the horizontal and vertical 
chromaticities is to use families of sextupoles with moderate 
strength, distributed around the ring 

  Using the thin-lens approximation, one can write  

€ 

ξx = ξx
natural +

1
4πQx

d t βx t( ) S0 t( ) Dx t( )
s

s+C

∫

€ 

ξy = ξy
natural −

1
4πQy

d t βy t( ) S0 t( ) Dx t( )
s

s+C

∫

€ 

ξx = ξx
natural +

1
4πQx

d t βxi S0i Dxi lsi
i=1

N

∑

€ 

ξy = ξy
natural −

1
4πQy

d t βyi S0i Dxi lsi
i=1

N

∑
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=> The sextupole strengths are obtained by solving a linear system 
of equations. Assuming only 2 sextupoles in the ring, yields  

€ 

S01 = −
4π
Dx1 ls

βy2 Qx Δξx + βx2 Qy Δξy
βx1 βy2 − βx2 βy1

 

 
  

 

 
  

€ 

S02 =
4π
Dx2 ls

βy1 Qx Δξx + βx1 Qy Δξy
βx1 βy2 − βx2 βy1

 

 
  

 

 
  

Assuming the same 
 length for both sextupoles  

ls 
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  In the presence of extra (NONLINEAR) FORCES, the Hill’s equation 
takes the general form 

Any perturbation 

  Perturbation terms in the equation of motion may lead to UNSTABLE 
motion, called RESONANCES, when the perturbating field acts in 
synchronism with the particle oscillations 

  A multipole of nth order is said to generate resonances of order n. 
Resonances below the 3rd order (i.e. due to dipole and quadrupole 
field errors for instance) are called LINEAR RESONANCES. The 
NONLINEAR RESONANCES are those of 3rd order and above 
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  General RESONANCE CONDITIONS 

where M, N and P are integers, P being non-negative, |M| + |N| is the 
order of the resonance and P is the order of the perturbation 
harmonic 

  Plotting the resonance lines for different values of M, N, and P in the 
(Qx, Qy) plane yields the so-called RESONANCE or TUNE DIAGRAM 

This dot in the tune 
diagram is called the 

WORKING POINT 
(case of the PS,  

here) 



Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013                                                                                                                                        /74 72 

  RESONANCE WIDTH = Band with some thickness around every 
resonance line in the resonance diagram, in which the motion may 
be unstable, depending on the oscillation amplitude  

  STOPBAND = Resonance width when the resonance is linear (i.e. 
below the 3rd order), because the entire beam becomes unstable if 
the operating point (Qx, Qy) reaches this region of tune values 

  DYNAMIC APERTURE = Largest oscillation amplitude which is 
stable in the presence of nonlinearities  

  TRACKING: In general, the equations of motion in the presence of 
nonlinear fields are untractable for any but the simplest situations. 
Tracking consists to simulate (using computer programs such as 
MAD) particle motion in circular accelerators in the presence of 
nonlinear fields 
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  KICK MODEL: Any nonlinear magnet is treated in the “point-like” 
approximation (i.e. the particle position is assumed not to vary as 
the particle traverses the field), the motion in all other elements of 
the lattice is assumed to be linear. Thus, at each turn the local 
magnetic field gives a “kick” to the particle, deflecting it from its 
unperturbed trajectory 

  HENON MAPPING           
 = Stroboscopic repre-

sentation of phase-space 
trajectories (normalised 
⇒ circles instead of 
e l l i p s e s f o r l i n e a r 
m o t i o n ) o n e v e r y 
machine turn at the fixed 
azimuthal position of the 
perturbation   

Close to 1/3 

Close to 1/4 Close to 1/5 
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  SEPARATRICES define boundaries between stable motion (bounded 
oscillations) and unstable motion (expanding oscillations) 

  The 3rd order resonance is a drastic (unstable) one because the 
particles which go onto this resonance are lost 

  (STABLE) ISLANDS: For the higher order resonances (e.g. 4th  and 
5th) stable motions are also possible in (stable) islands. There are 4 
stable islands when the tune is closed to a 4th order resonance and 5 
when it is closed to a 5th order resonance 


