MAD-X

Elias Métral

- (Short) introduction to MAD-X code
- Download and execution of MAD-X code in local
- Simple examples: 1-2-3-4-5-6-7
- Example 8: Case of the SPS machine

(SHORT) INTRODUCTION TO MAD-X CODE (1/2)

- Want to design an accelerator? => Use MAD-X code
- MAD = Methodical Accelerator Design
- Homepage = <u>http://cern.ch/mad</u> (or <u>http://mad.web.cern.ch/mad/</u>)
- Documentation (MAD-X primer, user's guide, tutorials, etc.) = <u>http://</u> mad.web.cern.ch/mad/www/documentation.html
- Current responsible person: Laurent Deniau (Laurent.Deniau@cern.ch)
 => Support & questions to
 - MAD Team: <u>mad@cern.ch</u>
 - or MAD community: <u>mad-usr@cern.ch</u>
 - => Information web page: http://mad.web.cern.ch/mad/www/information.html
- See recent nice Introduction by Guido Sterbini: <u>https://indico.cern.ch/</u> <u>getFile.py/access?contribId=32&resId=0&materialId=slides&confld=218284</u>

Elias Métral, Training-week in Accelerator Physics, Lund, Sweden, May 27-31, 2013

Likes feedback!

(SHORT) INTRODUCTION TO MAD-X CODE (2/2)

- MAD-X is a general purpose beam optics and lattice program distributed for free by CERN
- MAD-X is an optics program => Single particle dynamics
- It is used at CERN since more than 20 years for machine design and simulation (PS, SPS, LHC, linacs, etc.)
- MAD-X is written in C/C++/Fortran77/Fortran90 (source code is available under CERN copyright)

DOWNLOAD AND EXECUTION OF MAD-X CODE IN LOCAL (1/2)

Procedure given in the "Releases" page: http://mad.web.cern.ch/mad/www/releases.html

- 1) Go to general MAD-X web page: <u>http://cern.ch/mad</u>
- 2) Click on Releases (on the left)
- 3) Click on development releases repository (in the MAD-X development release) if it is for a MAC. Otherwise we should use the production release (above)
- A) Right click on madx-dev-macosx32 which is the executable to be used and save it in a folder (to be created and which we will call MADXFolderLund2013) where we will run MAD-X
- 5) Then open a Terminal and go to this folder
- 6) Type mv madx-dev-macosx32 madx to have a shorter name of the executable (called now madx)

DOWNLOAD AND EXECUTION OF MAD-X CODE IN LOCAL (2/2)

- 7) Make this file be an executable by typing: chmod u+x madx
- 8) Execute it to see if this works by typing ./madx => One should see something like this

EXAMPLE 1 (1/4)

 1st simple example => In a text editor, type the following lines and save the file in the folder MADXFolderLund2013 with the name Example1.mad

For comments: /*...*/ or start with // or !

MAD language is case insensitive

Example1.mad /* Definition of the elements *4 qfType:QUADRUPOLE, L=0.01, K1:=kf; qdType:QUADRUPOLE, L=0.01, K1:=kd; /* Definition of the the sequence */ fodo:SEQUENCE, REFER=entry, L=20; af1: afType, at=0.0; qd1: qdType, at=5.0; qf2: qfType, at=10.0; qd2: qdType, at=15.0; ENDSEQUENCE; /* Definition of the strengths */ kf=+20.0; kd=-20.0; /* Definition of the beam */ beam, particle=proton, energy=7000; /* Activation of the sequence */ use, sequence=fodo; /* Computations and plots */ twiss: plot, HAXIS=s, VAXIS=betx, bety; quit;

assignment

Deferred assignment: if kf changes, K1 is updated too

Length of the sequence

Can be: entry, centre or exit

> All statements are terminated with ;

6/35

EXAMPLE 1 (2/4)

- Type (in the folder MADXFolderLund2013) ./madx Example1.mad
- The 2 results should be

1) Execution of the program

EXAMPLE 1 (3/4)

 2) Creation of a new file called madx.ps => Open it with Ghostview for instance by typing gv madx.ps &

EXAMPLE 1 (4/4)

- Comparison with expected theoretical values
 - Length of a quadrupole (F and D)
 - Strength of a quadrupole (F and D)
 - Total length of the FODO cell (2 L)
 - Number of cells

$$\mu = 2 \arcsin\left(\frac{L}{2 f}\right) = 1.05 \text{ rad} = 60 \text{ deg}$$

$$f_{F,D} = \pm \frac{1}{k \ l}$$

 $N_{cell} = 2$

 $l = 0.01 \,\mathrm{m}$

 $k = 20.0 \text{ m}^{-2}$

2 L = 10 m

$$f = f_F = 5 \text{ m}$$
$$Q = \frac{N_{cell} \ \mu}{2 \ \pi} = 0.33$$

 $\underline{\mu}$

 $\xi = -\frac{2}{\mu} \tan^{1/2}$

$$\beta_{QF} = 2 L \frac{1 + \sin\left(\frac{\mu}{2}\right)}{\sin(\mu)} = 17.3 \text{ m} \qquad \beta_{QD} = 2 L \frac{1 - \sin\left(\frac{\mu}{2}\right)}{\sin(\mu)} = 5.8 \text{ m}$$

= -1.1 = Q' / Q

EXAMPLE 2

• Same as before but with the FODO cell length multiplied by 4

EXAMPLE 3 (1/3)

Same as Example 1 but asking for a certain value of the tunes =>

/* Definition of the elements */
qfType:QUADRUPOLE, L=0.01, K1:=kf;

Example3.mad

Matching condition

Can be done on global parameters (tune, chromaticity, etc.) or any local parameter qdType:OUADRUPOLE. L=0.01. K1:=kd; /* Definition of the the sequence */ fodo:SEQUENCE, REFER=entry, L=20; qf1: qfType, at=0.0; qd1: qdType, at=5.0; af2: afType, at=10.0; qd2: qdType, at=15.0; ENDSEQUENCE; /* Definition of the strengths */ kf=+20.0: kd=-20.0: /* Definition of the beam */ beam, particle=proton, energy=7000; /* Activation of the sequence */ use, sequence=fodo; /* Computations and plots */ twiss: plot, HAXIS=s, VAXIS=betx, bety; /*Matching*/ MATCH, sequence=fodo; GLOBAL, 01=.25; GLOBAL, 02=.25; VARY, NAME=kf, STEP=0.00001; VARY, NAME=kd, STEP=0.00001; LMDIF, CALLS=50, TOLERANCE=1e-8; ENDMATCH:

Method adopted

Elias Métral, Training-week in Accelerator Physics, Lund, Sw quit;

EXAMPLE 3 (2/3)

MATCH SUMMARY

Node_Name	Constraint	Туре	Target Value	Final Value	Penalty
Global constraint: Global constraint:	q1 q2	4 4	2.50000000E-01 2.50000000E-01	2.50002171E-01 2.50002640E-01	4.71246224E-10 6.97000102E-10
Final Penalty Function =	1.16824633e	-09			
Variable	Final Value	Initial	Value Lower Limit	Upper Limit	
kf kd	1.53177e+01 -1.53177e+01	2.0000	0e+01 -1.00000e+20 0e+01 -1.00000e+20	1.00000e+20 1.00000e+20	

END MATCH SUMMARY

EXAMPLE 3 (3/3)

Comparison with expected theoretical values

 \Rightarrow

=>

$$Q = \frac{N_{cell} \ \mu}{2 \ \pi} = 0.25$$

$$\mu = \frac{2 \pi Q}{N_{cell}} = 0.785$$

$$f = \frac{L}{2\sin\left(\frac{\mu}{2}\right)} = 6.53 \,\mathrm{m}$$

$$k = k_F = \frac{1}{f \ l} = 15.3 \text{ m}$$
 $k_D = -k_F$

EXAMPLE 4 (1/2)

Same as Example 1 but with

$$k = k_F = \frac{1}{f \ l} = 15.3 \text{ m}$$

$$k_D = -k_F$$

\varTheta 🔿 🔿 📄 Example4.mad
/* Definition of the elements */
qfType:QUADRUPOLE, L=0.01, K1:=kf;
qdType:QUADRUPOLE, L=0.01, K1:=kd;
/* Definition of the the sequence */
fodo:SEQUENCE, REFER=entry, L=20;
qf1: qfType, at=0.0;
qd1: qdType, at=5.0;
qf2: qfType, at=10.0;
qd2: qdType, at=15.0;
ENDSEQUENCE;
<u>/* Defini</u> tion of the strengths */
kf=+15.3;
kd=-15.3;
/* Definition of the beam */
beam, particle=proton, energy=7000;
/* Activation of the sequence */
use, sequence=fodo;
/* Computations and plots */
twiss;
plot, HAXIS=s, VAXIS=betx, bety;
quit;

EXAMPLE 4 (2/2)

gammatr	alfa	orbit5	length
-5.497558139e+11	-3.30872245e-24	-0	20
dxmax	betxmax	dq1	q1
Ø	19.55650218	-0.2633426252	0.2496978561
q2	xcorms	xcomax	dxrms
0.2496978561	Ø	Ø	0
dyrms	dymax	betymax	dq2
Ø	-0	19.55650218	-0.2633426252
synch_1	deltap	ycorms	ycomax
0	0	Ø	Ø
synch_5	synch_4	synch_3	synch_2
0	0	0	0

EXAMPLE 5 (1/3)

Same as Example 1 but replacing the drifts by dipoles

Example5.mad /* Definition of the elements */ qfType:QUADRUPOLE, L=0.01, K1:=kf; qdType:QUADRUPOLE, L=0.01, K1:=kd; MBType:RBEND, L=4.985, ANGLE:=ANGLE1; /* Definition of the the sequence */ fodo:SEQUENCE, REFER=entry, L=20; qf1: qfType, at=0.0; MB1: MBType, at=0.01; qd1: qdType, at=5.0; MB2: MBType, at=5.01; af2: afType. at=10.0; MB3: MBType, at=10.01; qd2: qdType, at=15.0; MB4: MBType, at=15.01; ENDSEQUENCE; /* Definition of the strengths */ kf=+20.0: kd=-20.0; ANGLE1:=0.1; /* Definition of the beam */ beam, particle=proton, energy=7000; /* Activation of the sequence */ use, sequence=fodo; /* Computations and plots */ twiss: blot, HAXIS=s, VAXIS=betx, bety, dx, dy; quit;

RBEND = Rectangular BENDing magnet. There is also SBEND = Sector BENDing magnet

EXAMPLE 5 (2/3)

EXAMPLE 5 (3/3)

Comparison with expected theoretical values

$$f = f_F = 5 \text{ m}$$
 (See Example 1)

$$\rho_0 = \frac{l_d}{\vartheta_d} = \frac{4.985}{0.1} = 49.85$$

$$D_{QF} = \frac{4 f^2}{\rho_0} \left(1 + \frac{L}{4 f} \right) \approx 2.5 \text{ m}$$

$$D_{QD} = \frac{4 f^2}{\rho_0} \left(1 - \frac{L}{4 f} \right) \approx 1.5 \text{ m}$$

EXAMPLE 6 (1/2)

- Same as Example 5 but introducing some thin sextupoles at the locations of the quadrupoles (2 families) to correct the chromaticities to 0
 - => Numerical values for the sextupole strengths deduced from theory (see page 69 of course on TBD):

ksf =
$$\frac{1}{2} \times (-) \frac{4\pi}{D_{QF} l_s} \left(\frac{\beta_{QF} Q_x \xi_x + \beta_{QD} Q_y \xi_y}{\beta_{QF}^2 - \beta_{QD}^2} \right) \approx 7.41 \,\mathrm{m}^{-3}$$

ksd =
$$\frac{1}{2} \times \frac{4\pi}{D_{QD} l_s} \left(\frac{\beta_{QD} Q_x \xi_x + \beta_{QF} Q_y \xi_y}{\beta_{QF}^2 - \beta_{QD}^2} \right) \approx -12.56 \text{ m}^{-3}$$

As there are 2 sextupoles / family Elias Métral, Training-week in As

\varTheta 🕙 🕒 📄 Exercise6.mad
/* Definition of the elements */
qfType:QUADRUPOLE, L=0.01, K1:=kf;
qdType:QUADRU <mark>POLE, L=0</mark> .01, K1:=kd;
MBType:RBEND, L=4.975, ANGLE:=ANGLE1;
SfType:SEXTUPOLE, L=0.01, K2:=ksf;
SdType:SEXTUPOLE, L=0.01, K2:=ksd;
/* Definition of the the sequence */
fodo:SEQUENCE, REFER=entry, L=20;
qr1: qr/ype, at=0.0;
MP1. MPTupe at_0 02.
ad1: adType, at=5.0:
Sd1: SdTvne, at=5.01:
MB2: MBType, dt=5.02:
qf2: qfType, at=10.0;
Sf2: SfType, at=10.01;
MB3: MBType, at=10.02;
qd2: qdType, at=15.0;
Sd2: SdType, at=15.01
MB4: MBType, at=15.02;
ENDSEQUENCE;
/* Definition of the strengths */
KT=+20.0;
KQ=-20.0;
$k_{of} = 7.41 \cdot 1$
ksd = -12.56:
/* Definition of the beam */
beam, particle=proton, energy=7000;
/* Activation of the sequence */
use, sequence=fodo;
/* Computations and plots */
twiss;
plot, HAXIS=s, VAXIS=betx, bety, dx, dy;
quit;

EXAMPLE 6 (2/2)

EXAMPLE 7 (1/2)

 Same as Example 6 but finding the required sextupole strengths by matching

Exercise7.mad /* Definition of the elements */ afType:OUADRUPOLE, L=0.01, K1:=kf; qdType:OUADRUPOLE, L=0.01, K1:=kd; MBType:RBEND, L=4.975, ANGLE:=ANGLE1; SfType:SEXTUPOLE, L=0.01, K2:=ksf: SdType:SEXTUPOLE, L=0.01, K2:=ksd; /* Definition of the the sequence */ fodo:SEQUENCE, REFER=entry, L=20; af1: afType, at=0.0; Sf1: SfType, at=0.01; MB1: MBType, at=0.02; qd1: qdType, at=5.0; Sd1: SdType, at=5.01; MB2: MBType, at=5.02; qf2: qfType, at=10.0; Sf2: SfType, at=10.01; MB3: MBType, at=10.02; qd2: qdType, at=15.0; Sd2: SdType, at=15.01; MB4: MBType, at=15.02; ENDSEQUENCE; /* Definition of the strengths */ kf=+20.0; kd=-20.0; ANGLE1=0.1: ksf=0; ksd=0: /* Definition of the beam */ beam, particle=proton, energy=7000; /* Activation of the sequence */ use. sequence=fodo: /* Computations and plots */ twiss; plot, HAXIS=s, VAXIS=betx, bety, dx, dy: /*Matchina*/ MATCH, sequence=fodo; GLOBAL, dQ1=0.0; GLOBAL, dQ2=0.0; VARY, NAME=ksf, STEP=0.00001; VARY, NAME=ksd, STEP=0.00001; LMDIF, CALLS=50, TOLERANCE=1e-8; ENDMATCH; quit;

EXAMPLE 7 (2/2)

MATCH SUMMARY

Node_Name	Constraint	Туре	Target Value	Final Value	Penalty
Global constraint: Global constraint:	dq1 dq2	4 4	0.0000000E+00 0.00000000E+00	-8.40104445E-12 -3.23113830E-12	7.05775479E-2 1.04402547E-2
Final Penalty Function :	= 8.10178026 e	-23			
Variable	Final Value	Initial	Value Lower Limit	Upper Limit	
ksf ksd	7.42249e+00 -1.26185e+01	0.0000	0e+00 -1.00000e+20 0e+00 -1.00000e+20	1.00000e+20 1.00000e+20	
end match summary					
		Close	e to theoretical	values	
Elias Métral. Training-week in Acceler	ator Physics, Lund, Swede	en, May 27-3	31, 2013		

EXAMPLE 8 (1/13)

Case of the SPS machine (in 2008) without or with extraction bump

=> Info split into several files (due to large number of elements)

sps2008.ele

EXAMPLE 8 (2/13)

							LOF
ACL	:	RFCAVITY	,	L :	- 3.52913	;	LOF
ACTA	:	RFCAVITY	,	ι:	= 17.7 82	;	LQS
ACTB	:	RFCAVITY	,	L :	= 17.7 82	;	LSD
ACTC	:	RFCAVITY	,	L :	= 21.896	;	LSE
ACTD	:	RFCAVITY	,	L :	= 21.896	;	LSE
AEG	:	INSTRUMENT	,	L :	. 5593	;	LSF
AEP	:	INSTRUMENT	,	L :	= 1	;	MBA
AEPA	:	INSTRUMENT	,	L :	. 722	;	MBB
AEPC	:	INSTRUMENT	,	L :	. 722	;	MDH
AERB	:	HMONITOR	,	ι:	685	;	MDH
AESA	:	INSTRUMENT	,	L :	2305	;	MDH
AETA	:	INSTRUMENT	,	L :	. 21	;	MDH
AEW	:	INSTRUMENT	,	L :	5105	;	MDH
AEWA	:	INSTRUMENT	,	L :	5105	;	MDD
AEWB	:	INSTRUMENT	,	L ::	5661	;	MDG
APWL	:	INSTRUMENT	,	L ::	. 776	;	MDU
BBLR	:	MONITOR	,	L ::	. 72	;	MDV
BBLRM	:	MONITOR	,	L :	8	;	MDV
BBSR	:	INSTRUMENT	,	L :	41	;	MDV
BCT	:	INSTRUMENT	,	L ::	. 694	;	MDV
BDH	:	HMONITOR	,	L ::	= 2.32	;	MKD
BDV	:	VMONITOR	,	L :	= 1.46	;	MKD
BFCT	:	INSTRUMENT	,	L ::	. 482	;	MKD
BMO	:	MONITOR	,	L :	45	;	MKD
BPCE	:	MONITOR	,	L :	= .4	;	MKE
BPCL	:	MONITOR	,	L ::	. 72	;	MKE
BPCN	:	MONITOR	,	L ::	. 236	;	MKP
BPCR	:	MONITOR	,	L :	598	;	MKP
BPD	:	MONITOR	,	L ::	= .4	;	MKP
BPH	:	HMONITOR	,	L ::	275	;	MKQ
BPHA	:	MONITOR	,	L ::	5	;	МКО
BPL	:	MONITOR	,	L ::	45	;	MPL
BPLT	:	MONITOR	,	L :	681	;	MPL
BPMBH	:	MONITOR	,	L :	.1 3	;	MPN
BPMBV	:	MONITOR	,	L ::	.1 3	;	MPS
BPNB	:	HMONITOR	,	L ::	. 364	;	MPS
BPNC	:	HMONITOR	,	L ::	. 562	;	MSE
BPSH	:	HMONITOR	,	L :	= 3.38	;	MGT
BPSV	:	VMONITOR	,	L :	= 3.38	;	05
BPV	:	VMONITOR	,	L ::	.275	;	QE
BPVA	:	MONITOR	,	L :	5	;	Qm Qm
BPVC	:	VMONITOR	,	L :	.562	;	UMA OMO
BPVT	:	VMONITOR	ĺ.	L ::	= .4	;	QMS
BPW	:	VMONITOR	,	L :	. 86	;	QSE
BRCH	:	RCOLLIMATOR	,	L :	. 6	;	QSP
			•••			-	STA TBS

ENDOFSPS	:	MARKER	;	
LOD	:	OCTUPOLE	, L := .677	;
LODOUT	:	OCTUPOLE	, L := .677	;
LOE	:	OCTUPOLE	, L := .74	;
LOEN	:	OCTUPOLE	, L := .656	;
LOF	:	OCTUPOLE	, L := .705	;
LOFOUT	:	OCTUPOLE	, L := .705	;
LQS	:	QUADRUPOLE	, L := .542	;
LSD	:	SEXTUPOLE	,L:=.42	;
LSE	:	SEXTUPOLE	, L := .74	;
LSEN	:	SEXTUPOLE	, L := .72	;
LSF	:	SEXTUPOLE	, L := .423	;
MBA	:	RBEND	, L := 6.26	;
MBB	:	RBEND	, L := 6.26	;
MDH	:	HKICKER	, L := .25	;
MDHA	:	HKICKER	, L := .306	;
MDHB	:	HKICKER	,L:= .402	;
MDHD	:	HKICKER	, L := .36	;
MDHW	:	HKICKER	, L := .526	;
MDPH	:	HKICKER	, L := .25	;
MDSH	:	HKICKER	, L := .7	;
MDV	:	VKICKER	, L := .25	;
MDVA	:	VKICKER	, L := .424	;
MDVB	:	VKICKER	, L := .41	;
MDVW	:	VKICKER	, L := .526	;
MKDHA	:	HKICKER	, L := 1.6	;
MKDHB	:	HKICKER	, L := 1.6	;
MKDVA	:	VKICKER	, L := 2.892	;
MKDVB	:	VKICKER	, L := 2.892	;
MKEL	:	HKICKER	, L := 2.014	;
MKES	:	HKICKER	, L := 2.014	;
MKP	:	HKICKER	, L := 3.423	;
MKPA	:	HKICKER	, L := 3.423	;
MKPC	:	HKICKER	, L := 1.78	;
МКQН	:	HKICKER	, L := .96	;
MKQV	:	VKICKER	, L := 1.416	;
MPLH	:	HKICKER	, L := 2.06	;
MPLV	:	VKICKER	, L := .555	;
MPNH	:	HKICKER	, L := 2.04	;
MPSH	:	HKICKER	, L := .714	;
MPSV	:	VKICKER	, L := .275	;
MSE	:	HKICKER	, L := 2.28	;
MST	:	HKICKER	,L := 2.40	;
QE	:	QUADRUPOLE	, L := .698	;
QM	:	QUADRUPOLE	,L := 3.085	;
QMA	:	QUADRUPOLE	, L := 3.791	;
QMS	:	QUADRUPOLE	, L := .705	;
QSE	:	QUADRUPOLE	,L := .42	;
QSPLIT	:	MARKER	;	
STARTSPS	:	MARKER	;	
TBSJB	:	RCOLLIMATOR	, L := 2.1	;

...

EXAMPLE 8 (3/13)

sps2008.seq

						QF.63410	:	QF2.F	,	ΑT	:=	6849.0509	;
option, echo;						MBA.63430	:	MBA.F	,	AT	:=	6854.0834	;
	-					MBA.63450	:	MBA.F	,	ΑT	:=	6860.7434	;
SPS: SEQUENCE, L =	= 6	911.5038;				MBB.63470	:	MBB.F	,	ΑT	:=	6867.3934	;
						MBB.63490	:	MBB.F	,	ΑT	:=	6874.0334	;
BEGI.10010	:	STARTSPS	,	AI := 0	;	LOD.63502	:	LOD.F	,	ΑT	:=	6877.8004	;
QF.10010	:	QF2.F	,	AT := 1.5425	;	LSD.63505	:	LSDB.F	,	ΑT	:=	6878.5091	;
MBA.10030	:	MBA.F	,	AT := 6.575	;	MDV.63507	:	MDV63507.F	,	ΑT	:=	6878.9961	;
MBA.10050	:	MBA.F	,	AT := 13.235	;	BPV.63508	:	BPV	,	AT	:=	6879.2736	;
MBB.10070	:	MBB.F	,	AT := 19.885	;	QD.63510	:	QD.F	,	ΑT	:=	6881.0486	;
MBB.10090	:	MBB.F	,	AT := 26.525	;	MBB.63530	:	MBB.F	,	ΑT	:=	6886.0711	;
VVSA.10101	:	VVSA	,	AT := 29.9385	;	MBB.63550	:	MBB.F		ΑT	:=	6892.7111	;
LSD.10105	:	LSDA.F	,	AT := 31.0007	;	MBA.63570	:	MBA.F	ĺ.	ΑT	:=	6899.3611	;
MDV.10107	:	MDV10107.F	,	AT := 31.4877	;	MBA.63590	:	MBA.F	ĺ.	AT	:=	6906.0211	:
BPV.10108	:	BPV	,	AT := 31.7652	;	LOE.63602	:	L0E63602.F		ΑT	:=	6909.8401	:
QD.10110	:	QD.F	,	AT := 33.5402	;	LSF.63605	:	LSFA.F		ΑT	:=	6910.5088	:
MBB.10130	:	MBB.F	,	AT := 38.5627	;	MDH.63607	:	MDH63607.F		AT	:=	6910.9838	:
MBB.10150	:	MBB.F	,	AT := 45.2027	;	BPH.63608	:	BPH		AT	:=	6911.2713	:
MBA.10170	:	MBA.F	,	AT := 51.8527	;	END.10010	:	ENDOFSPS	<i>.</i>	AT	:=	6911.5038	:
MBA.10190	:	MBA.F	,	AT := 58.5127	;		-		,		-		,
LSF.10205	:	LSFB.F	,	AT := 62.9984	;	ENDSEQUENCE :							
MDH.10207	:	MDH10207.F	,	AT := 63.4754	;								
BPH.10208	:	BPH	,	AT := 63.7629	;	ontionecho:							
QF.10210	:	QF2.F	,	AT := 65.5379	;	oporon, -cono,							

return;

. . .

EXAMPLE 8 (4/13)

option, -echo;

elements.str

LSDA.F	:	LSD	,	K2	:=	ksda;
LSDB.F	:	LSD	,	K2	:=	ksdb;
LSFA.F	:	LSF	,	K2	:=	ksfa;
LSFB.F	:	LSF	,	K2	:=	ksfb;
LSFC.F	:	LSF	,	K2	:=	KSFC;
MBA.F	:	MBA	,	ANGLE	:=	8.445141542E-03;
MBB.F	:	MBB	,	ANGLE	:=	8.445141542E-03;
QD.F	:	QM	,	K1	:=	KQD;
QDA.F	:	QMA	,	K1	:=	KQDA;
QF1.F	:	QM	,	K1	:=	KQF1;
QF1A.F	:	QMA	,	К1	:=	KQF1A;
QF2.F	:	QM	,	K1	:=	KQF2;
QF2A.F	:	QMA	,	K1	:=	KQF2A;
ACL31695.F	:	ACL	,	VOLT	:=	VACL31695;
ACL31733.F	:	ACL	,	VOLT	:=	VACL31733;
ACTA31637.F	:	ACTA	,	VOLT	:=	VACTA31637, FREQ=200.266; !, HARMON=4620;
ACTB31739.F	:	ACTB	,	VOLT	:=	VACTB31739, FREQ=200.266; !, HARMON=4620;
ACTC31836.F	:	ACTC	,	VOLT	:=	VACTC31836, FREQ=200.266; !, HARMON=4620;
ACTD31934.F	:	ACTD	,	VOLT	:=	VACTD31934, FREQ=200.266; !, HARMON=4620;
BRCH51902.F	:	BRCH	,	XSIZE	:=	0.00;
BRCV51899.F	:	BRCV	,	XSIZE	:=	0.00;
LOD.F	:	LOD	,	КЗ	:=	K3LOD;

. . . .

ZKHA21991 F	:	ZKHA	,	KICK	:= KZKHA21991;
ZKV21993.F	:	ZKV	,	KICK	:= KZKV21993;
ZS21633.F	:	ZS	,	KICK	:= KZS21633;
ZS21638.F	:	ZS	,	KICK	:= KZS21638;
ZS21655.F	:	ZS	,	KICK	:= KZS21655;
ZS21671.F	:	ZS	,	KICK	:= KZS21671;
ZS21676.F	:	ZS	,	KICK	:= KZS21676;

option, echo;

EXAMPLE 8 (5/13)

ft_qs_ext_2008.str

optionecho:							
,		KMPLH41658	:= 0.000479531	9 <mark>*On_ExtBump</mark> ;			
ksda:=-0.1010244	1459;	KMPLH41994	:= 0.000367391	9 <mark>*On ExtBump:</mark>			
ksdb:=-0.1439436	5811;	KMPLH61655	:= 0.00;				
ksfa:=0.02344776	5222;	KMPLH61996	:= 0.00;		K1Q3	6E51897	:=
ksfb:=0.00021106	54706 :	KMPLV41501	:= 0.000025384	6 <u>*On ExtBump</u> :	KZKF	IA21991	:=
KSFC:=KSFA;		KMPLV42101	:= 0.000000615	1*On_ExtBump;	KZKV	/21993	:=
,		KMPNH21732	:= 0.00;		KZS2	21633	:=
KOD:=-0.01462465	5119;	KMPSH21202	:= 0.00;		KZS2	21638	:=
KODA:=KOD*9.0/11	L.0;	KMPSH41402	:= 0.000043937	3*On_ExtBump;	KZS2	21655	:=
KOF1:=0.01454253	3978́;	KMPSH42198	:= 0.000068633	8*On_ExtBump;	KZS2	21671	:=
KQF1A:=KQF1*9.0/	/11.0;	KMPSH61402	:= 0.00;		KZS2	21676	:=
KOF2:=0.01478155	5121;	KMPSH62199	:= 0.00;				
KQF2A:=KQF2*9.0/	/11.0;	KMPSV21303	:= 0.00;		! EN	ND-OF-STRE	NGTHS
		KMPSV21503	:= 0.00;				
! User definable	e strengths	KMPSV22103	:= 0.00;		opti	ion, echo;	
VACL31695	:= 0.00;	KMPSV22303	:= 0.00;		retu	ırn;	
VACL31733	:= 0.00;	KMPSV41303	:= 0.000002044	*On ExtBump:			
VACTA31637	:= 0.00;	KMPSV42303	:= -0.00002538	62*On_ExtBump;			
VACTB31739	:= 0.00;	KMPSV61303	:= 0.00;				
VACTC31836	:= 0.00;						
VACTD31934	:= 0.00;						
K3LOD	:= 0.00:						

. . .

:= 0.00; := 0.00; := 0.00; := 0.00; := 0.00; := 0.00; := 0.00; := 0.00;

EXAMPLE 8 (6/13)

CNGS_extraction.beamx

Beam, particle = proton, pc = 400.0,exn=12.0e-6*4.0, eyn=7.0E-6*4.0, sige=0.4e-3, NPART=2E10, BUNCHED;

Z:=1; A:=1; TBUNCH:=0.5e-9; DPP:=BEAM->SIGE*(BEAM->ENERGY/BEAM->PC)^2;

value, dpp; return;

EXAMPLE 8 (7/13)

twiss.cmdx

select, flag=twiss, clear=true; select, flag=twiss, range=#S/#E, column=name,s,x,y;

TWISS, DELTAP=0.0; write, table=twiss, file=twiss.prt;

plot, haxis=s, vaxis=betx,bety, hmin= StartPlot, hmax= EndPlot, vmin=0.0, vmax=150.0, colour=100; plot, haxis=s, vaxis=dx,dy, hmin= StartPlot, hmax= EndPlot, vmin=-1.0, vmax=6.0, colour=100; plot, haxis=s, vaxis=mux,muy, hmin= StartPlot, hmax= EndPlot, vmin=0.0, vmax=30.0, colour=100; plot, haxis=s, vaxis=x,y, hmin= StartPlot, hmax= EndPlot, vmin=-0.010, vmax=0.040, colour=100;

return;

EXAMPLE 8 (8/13)

deneral madx	option, -echo;				
generalinaax	is the distance between the polefaces				
	! and not the arc length				
	call, file = 'CNGS_extraction.beamx';				
	call, file = 'sps2008.ele';				
	call, file = 'elements.str';				
	call, file = 'ft_qs_ext_2008.str';				
	call, file = 'sps2008.seq';				
	option, echo;				
	! To plot only the 4th sextant				
	! StartPlot:=3456.0;				
	! EndPlot:=4608.0;				
	! StartPlot:=1020.0; EndPlot:=6060.0:				
	StartPlot:=0.0:				
	EndPlot:=6911.5038;				
	! Flag for the extraction bump				
	On_ExtBump:=0; 0 => Extraction bump OFF				
	USE, period=SPS, range=#S/#E; 1 => Extraction b	ump ON			
	call, file = 'twiss.cmdx';				
Elias Métral, Training-week in Accelerator	stop;		30/35		

EXAMPLE 8 (9/13)

- Typing ./max general.madx, yields
 - A file with all the data => twiss.prt
 - A file with all the plots => madx.ps

EXAMPLE 8 (10/13)

Case with On_ExtBump:=0 => Extraction bump OFF

EXAMPLE 8 (11/13)

EXAMPLE 8 (12/13)

2	NAME	%05s	"TWISS"	
ē	TYPE	%05s	"TWISS"	
0	SEQUENCE	%03s	"SPS"	
@	PARTICLE	%06s	"PROTON"	
@	MASS	%le	0.938272013	
@	CHARGE	%le	1	
a	ENERGY	%le	400.0011004	
ā	PC.	%le	400	
ā	GAMMA	%le	426-3167769	
a	KRUNCH	%le	120.0101109	
a	RCHDDENT	WIA	A AAA1380012007	
e a	SICE	2010 2010	0.0001309912007	
e a	SICT	2010 2010	0.0004	
9		2010 2010	2- 48	
0		ale all	20+10	
@ 0	EX	%le	2.8148160398-08	
0	EY	%le	1.641976023e-08	
@	ET	%le	1	
0	LENGTH	%le	6911.5038	
@	ALFA	%le	0.001848026402	
0	ORBIT5	%le	-0	
0	GAMMATR	%le	23.26193909	
0	Q1	%le	26.66659956	
0	Q2	%le	26.58000001	
0	DQ1	%le	-36.24716692	
0	DQ2	%le	0.6445710371	
0	DXMAX	%le	5.271538934	
0	DYMAX	%le	0	
0	XCOMAX	%le	0	
0	YCOMAX	%le	0	
0	BETXMAX	%le	103.9512232	
0	BETYMAX	%le	106.5962215	
0	XCORMS	%le	0	
@	YCORMS	%le	0	
0	DXRMS	%le	2.176283147	
0	DYRMS	%le	0	
a	DELTAP	%le	ø	
a	SYNCH 1	%le	ø	
ā	SYNCH 2	%le	ē	
ā	SYNCH 3	%le	ñ	
ā	SYNCH 4	%le	ñ	
ã	SYNCH 5	%le	ñ	
ā	TITLE	%98s	"no_title"	
ā	ORIGIN	%23s	"MAD_X 5.00.20 Dorwin 32"	
ā	DATE	%28s	"20/05/13"	
a	TIME		"15 20 32"	
*	NAME	70005	15.20.32	
¢	NALL.		910 1	
φ	/~~ "≤D≤¢≤T↓DT"		,71C	
	BECT 10010"		0	
	DE01.10010		2 005	
	UF.10010"		3.005	
	"URIFI_0"		3.445	
	"MBA.10030"		9.705	

File twiss.prt

. . . .

Y

0

0

0 0 0

%le

Х

0

0

0

0

0

%le

Elias Métral, Training-week in Accelerator Ph

EXAMPLE 8 (13/13)

Case with On_ExtBump:=1 => Extraction bump ON

