TRAINING-WEEK IN ACCELERATOR PHYSICS

Elias Métral

- Programme of the week

	Morning (lectures: $\mathbf{2} \times \mathbf{4 5} \mathbf{~ m i n}$)	Afternoon (problem solving, individual work)
MO 27/05/13	Introduction and luminosity	Exercises on luminosity
TU 28/05/13	Transverse beam dynamics	Exercises on transverse beam dynamics
WE 29/05/13	Longitudinal beam dynamics	Exercises on longitudinal beam dynamics
TH 30/05/13	Collective effects (space charge, impedances and related instabilities, beam-beam and e-cloud)	Tutorial on MAD-X code (for transverse beam dynamics) + Exercises on collective effects
FR 31/05/13	Feedback and hand-out of last problem (to be solved after the course)	Reserve time

- Introduction

Elias.Metral@cern.ch

Tel.: 0041764874809 htip: Ilemetral. web.cern.ch/emetrall

CONCEPTS AND PREREQUISITES

- BEAM DYNAMICS describes the motion of a charged particle beam in an accelerator
- LOW-INTENSITY PARTICLE BEAMS can be modeled by using singleparticle dynamics, in which particles are tracked through the external electromagnetic fields (from the guiding and focusing magnets in the transverse planes, RF cavities in the longitudinal plane, etc.) $=>$ Classical mechanics (linear and nonlinear), electrodynamics, physical or engineering mathematics and special relativity
- HIGH-INTENSITY (and or HIGH-DENSITY) PARTICLE BEAMS require a more complicated description which involves interactions between the beam particles and between the beam particles and their environment (and/or other particles) $\Rightarrow>$ Plasma physics. Highintensity (and or high-density) effects are very important because they usually pose an upper limitation to the number of particles that can be injected into an accelerator

Example of the LHC p beam in the injector chain

LAYOUT OF THE LHC

Courtesy W. Herr
IP = Interaction Point

COLLISION in IP1 (ATLAS)

Relative beam sizes around IP1 (A.tas) in collision
\Rightarrow Vertical crossing angle in IP1 (ATLAS) and horizontal one in IP5 (CMS)

FIGURE OF MERIT for a synchrotron / collider: Brightness / luminosity

- (2D) BEAM BRIGHTNESS
$B=\frac{I}{\pi^{2} \varepsilon_{x} \varepsilon_{y}}$ Beam current

Transverse emittances

- MACHINE LUMINOSITY

Number of events per second generated in the collisions

Cross-section of the reaction

- The Luminosity depends only on the beam parameters \Rightarrow It is independent of the physical reaction
- Reliable procedures to compute and measure
\Rightarrow For a Gaussian (round) beam distribution

PEAK LUMINOSITY for ATLAS\&CMS in the LHC $=L_{p e a k}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Number of particles per bunch	N_{b}	1.15×10^{11}
Number of bunches per beam	M	2808
Revolution frequency	f_{0}	11245 Hz
Relativistic velocity factor	γ	$7461(=>E=7 \mathrm{TeV})$
β-function at the collision point	β^{*}	55 cm
Normalised rms transverse beam emittance	ε_{n}	$3.75 \times 10^{-4} \mathrm{~cm}$
Geometric reduction factor	$F_{c a}$	0.84

$$
F_{c a}=1 / \sqrt{1+\left(\frac{\theta_{c} \sigma_{s}}{2 \sigma^{*}}\right)^{2}}
$$

Full crossing angle at the IP	$\boldsymbol{\theta}_{\boldsymbol{c}}$	$285 \mu \mathrm{rad}$
Rms bunch length	$\boldsymbol{\sigma}_{s}$	7.55 cm
Transverse rms beam size at the IP	$\boldsymbol{\sigma}^{*}$	$16.7 \mu \mathrm{~m}$

INTEGRATED LUMINOSITY $L_{\mathrm{int}}=\int_{0}^{T} L(t) d t$
\Rightarrow The real figure of merit $=L_{\mathrm{int}} \sigma_{r}=$ number of events

- LHC integrated Luminosity expected per year (~107 s): [80-120] fb-1

Reminder: 1 barn $=10^{-24} \mathrm{~cm}^{2}$
and femto $=10^{-15}$

ESTIMATIONS MADE BEFORE THE LHC STARTED

- The total proton-proton cross section at 7 TeV is ~ 110 mbarns:
- Inelastic
- Single diffractive
- Elastic
$\Rightarrow \quad \sigma_{\text {in }}=60 \mathrm{mbarns}$
$\Rightarrow \quad \sigma_{\mathrm{sd}}=12 \mathrm{mbarns}$
$\Rightarrow \quad \sigma_{\text {el }}=40 \mathrm{mbarns}$
- The cross section from elastic scattering of the protons and diffractive events will not be seen by the detectors as it is only the inelastic scatterings that give rise to particles at sufficient high angles with respect to the beam axis
- Inelastic event rate at nominal luminosity $=10^{34} \times 60 \times 10^{-3} \times 10^{-24}=$ 600 millions / second per high-luminosity experiment
- The bunch spacing in the LHC is $\mathbf{2 5} \mathbf{n s} \Rightarrow$ Crossing rate of 40 MHz
- However, there are bigger gaps (for the kickers) \Rightarrow Average crossing rate $=$ number of bunches \times revolution frequency $=2808 \times 11245=$ 31.6 MHz
* (600 millions inelastic events $/$ second) $/\left(31.6 \times 10^{6}\right)=19$ inelastic events per crossing
- Total inelastic events per year $\left(\sim 10^{7} s\right)=600$ millions $\times 10^{7}=6 \times 10^{15}$ $\sim 10^{16}$
* The LHC experimental challenge is to find rare events at levels of 1 in 10^{13} or more $\Rightarrow \sim 1000$ Higgs events in each of the ATLAS and CMS experiments expected per year

ACCELERATOR MODEL

WALL CURRENT MONITOR = Device used to measure the instantaneous value of the beam current

(Transverse) beam POSITION PICK-UP MONITOR

\Rightarrow Horizontal beam orbit measurement in the PS

6 spikes observed as
$Q_{x} \approx 6.25$

FAST WIRE SCANNER

\Rightarrow Measures the transverse beam profiles by detecting the particles scattered from a thin wire swept rapidly through the beam

SUMMARY OF LECTURE ON TRANSVERSE BEAM DYNAMICS

- Design orbit in the centre of the vacuum chamber
- Lorentz force $\vec{F}=e(\vec{Z}+\vec{v} \times \vec{B})$
- Dipoles (constant force) \Rightarrow Guide the particles along the design orbit
- Quadrupoles (linear force) \Rightarrow Confine the particles in the vicinity of the design orbit
-Betatron oscillation in x (and in y) \Rightarrow Tune $Q_{x}\left(\right.$ and $\left.Q_{y}\right) \gg 1$
- Twiss parameters define the ellipse in phase space ($x, x,=d x / d s$)
- β-function reflects the size of the beam and depends only on the lattice
- Beam emittance must be smaller than the mechanical acceptance
- Higher order multipoles from imperfections (nonlinear force)
\Rightarrow Resonances excited in the tune diagram and the working point (Q_{x}, Q_{y}) should not be close to most of the resonances
- Nonlinearities reduce the acceptance \Rightarrow Dynamic aperture
- Injection and extraction (septum and kicker)
- Betatron and dispersion matching (between a circular accelerator and a transfer line)

SUMMARY OF LECTURE ON LONGITUDINAL BEAM DYNAMICS

- RF cavities are used to accelerate (or decelerate) the particles
- Transition energy and sinusoidal voltage $\Rightarrow \vec{F}=e(\vec{E}+\vec{v} \times \vec{B})$
- Harmonic number = Number of RF buckets (stationary or accelerating)
- Bunched beam (instead of an unbunched or continuous beam)
- Synchrotron oscillation around the synchronous particle in z \Rightarrow Tune $Q_{z} \ll 1$
- Stable phase Φ_{s} below transiton and $\pi-\Phi_{\mathrm{s}}$ above transition
- Ellipse in phase space $(\Delta t, \Delta E)$
- Beam emittance must be smaller than the bucket acceptance
- Bunch splittings and rotation very often used

SUMMARY OF LECTURE ON COLLECTIVE EFFECTS (1/2)

* (Direct) space charge $=$ Interaction between the particles (without the vacuum chamber) \Rightarrow Coulomb repulsion + magnetic attraction
- Tune footprint in the tune diagram \Rightarrow Interaction with resonances
- Disappears at high energy
- Reduces the RF bucket below transition and increases it above
- Wake fields = Electromagnetic fields generated by the beam interacting with its surroundings (vacuum pipe, etc.) \Rightarrow Impedance $=$ Fourier transform of the wake field
- Bunched-beam coherent instabilities
- Coupled-bunch modes
- Single-bunch or Head-Tail modes (low and high intensity)
- Beam stabilization
- Landau damping
- Feedbacks
- Linear coupling between the transverse planes

SUMMARY OF LECTURE ON COLLECTIVE EFFECTS (2/2)

- Beam-Beam = Interaction between the 2 counter-rotating beams \Rightarrow Coulomb repulsion + magnetic repulsion
- Crossing angle, head-on and long-range interactions
- Tune footprint in the tune diagram \Rightarrow Interaction with resonances
- Does not disappear at high energy
- PACMAN effects \Rightarrow Alternate crossing scheme
- Coherent modes \Rightarrow Possible loss of Landau damping
- Electron cloud
- Electron cloud build-up \Rightarrow Multi-bunch single-pass effect
- Coherent instabilities induced by the electron cloud
- Coupled-bunch
- Single-bunch
- Tune footprint in the tune diagram \Rightarrow Interaction with resonances
- Does not disappear at high energy

REMINDERS: (1) RELATIVISTIC EQUATIONS

$$
E_{\text {rest }}=m_{0} c^{2}
$$

$$
\gamma=\frac{E_{\text {total }}}{E_{\text {rest }}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-\beta^{2}}}
$$

$$
\beta=\frac{v}{c}
$$

(2) MOST IMPORTANT 4-VECTORS \& INVARIANTS AND LORENTZ SCALAR PRODUCT

- 4-dimensional radius vector

$$
\vec{X}=(c t, \vec{x})
$$

- 4-velocity

$$
\vec{V}=c \frac{d \vec{X}}{d s}=\frac{d \vec{X}}{d \tau}=\gamma(c, \vec{v})
$$

Proper time

- 4-momentum (energy-momentum vector)

$$
\vec{P}=\left(\frac{E}{c}, \vec{p}\right)=\gamma m_{0}(c, \vec{v})=m_{0} \vec{V}
$$

- Current vector

$$
\vec{J}=\rho(c, \vec{v})=\frac{\rho}{\gamma} \vec{V}
$$

with $\rho=\rho_{0}$ the density in the rest system of the volume element considered

- Lorentz scalar product

$$
\begin{aligned}
& \left(u_{1} u_{2}\right)=u_{1 \mu} u_{2}^{\mu} \\
& =u_{1}^{0} u_{2}^{0}-u_{1}^{1} u_{2}^{1}-u_{1}^{2} u_{2}^{2}-u_{1}^{3} u_{2}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } u^{\mu}=\left(u^{0}, u^{1}, u^{2}, u^{3}\right) \text { the contravariant 4-vector } \\
& \text { and } u_{\mu}=\left(u^{0},-u^{1},-u^{2},-u^{3}\right) \text { the covariant 4-vector }
\end{aligned}
$$

- Invariants

$$
\begin{aligned}
& X^{2}=X_{\mu} X^{\mu}=(c t)^{2}-\vec{x}^{2} \quad V^{2}=c^{2} \\
& P^{2}=m_{0}^{2} c^{2} \\
& J^{2}=\left(\frac{\rho}{\gamma}\right)^{2} c^{2}=\rho_{0}^{2} c^{2}
\end{aligned}
$$

(3) ENERGY, MOMENTUM AND VELOCITY OF ONE PARTICLE

 SEEN FROM THE REST SYSTEM OF ANOTHER ONEConsider 2 particles: 1 and 2, with rest mass m_{01} and m_{02}

- The 3 invariants are

$$
P_{1}^{2}=m_{01}^{2} c^{2}, \quad P_{2}^{2}=m_{02}^{2} c^{2}
$$

$$
\text { and } P_{1} P_{2} \quad\left(\text { or } \quad\left(P_{1}+P_{2}\right)^{2} \text { or }\left(P_{1}-P_{2}\right)^{2}\right)
$$

- Total Centre of Mass (CM) energy squared

$$
\begin{aligned}
s & =c^{2}\left(P_{1}+P_{2}\right)^{2}=E_{C M}^{2} \\
& \Rightarrow \sqrt{s}=E_{C M}
\end{aligned}
$$

- Making the computation in the rest system of particle 1, one can show the 3 following invariant expressions
- The energy of particle 2 seen from particle 1 is

$$
E_{21}=\frac{P_{1} P_{2}}{m_{01}}
$$

- The momentum of particle 2 seen from particle 1 is

$$
\vec{p}_{21}^{2}=\frac{E_{21}^{2}}{c^{2}}-m_{02}^{2} c^{2}=\frac{\left(P_{1} P_{2}\right)^{2}-m_{01}^{2} m_{02}^{2} c^{4}}{m_{01}^{2} c^{2}}
$$

- The relative velocity (symmetric in 1 and 2) is

$$
v_{21}^{2}=\frac{\vec{p}_{21}^{2} c^{4}}{E_{21}^{2}}=c^{2} \frac{\left(P_{1} P_{2}\right)^{2}-m_{01}^{2} m_{02}^{2} c^{4}}{\left(P_{1} P_{2}\right)^{2}}
$$

- It can also be shown (using the relation given in the Useful relations $\left.\left(\vec{v}_{1} \times \vec{v}_{2}\right)^{2}=\vec{v}_{1}^{2} \vec{v}_{2}^{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)^{2}\right)$ that

$$
v_{21}=\frac{\sqrt{\left(\vec{v}_{1}-\vec{v}_{2}\right)^{2}-\frac{\left(\vec{v}_{1} \times \vec{v}_{2}\right)^{2}}{c^{2}}}}{1-\frac{\vec{v}_{1} \cdot \vec{v}_{2}}{c^{2}}}
$$

(4) LORENTZ FORCE

$$
\vec{F}=e(\vec{E}+\vec{v} \times \vec{B})
$$

- Cartesian ($\mathrm{x}, \mathrm{y}, \mathrm{s}$)

$$
F_{x}=e\left(E_{x}-v B_{y}\right)
$$

$$
F_{y}=e\left(E_{y}+v B_{x}\right)
$$

$$
F_{s}=e E_{s}
$$

$$
F_{s}=e E_{s}
$$

(5) LORENTZ TRANSFORM

(6) MAXWELL EQUATIONS

- Differential forms
$\operatorname{div} \vec{E}=\frac{\rho}{\varepsilon}$
$\operatorname{div} \vec{H}=0$
$\overrightarrow{\operatorname{rot}} \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t}$
$\overrightarrow{\operatorname{rot}} \vec{H}=\vec{J}+\varepsilon \frac{\partial \vec{E}}{\partial t}$
- Integral forms

$$
\iiint d i v \vec{E} d V=\iint \vec{E} \cdot d \vec{S}=\frac{1}{\varepsilon} \iiint \rho d V
$$

$$
\iiint \operatorname{div} \vec{H} d V=\iint \vec{H} \cdot d \vec{S}=0
$$

Faraday's and Lenz law

Ampere's
$\iint \overrightarrow{r o t} \vec{E} \cdot d \vec{S}=\oint \vec{E} \cdot d \vec{s}=-\mu \iint \frac{\partial \vec{H}}{\partial t} \cdot d \vec{S}$ law

$$
\iint \overrightarrow{\operatorname{rot}} \vec{H} \cdot d \vec{S}=\oint \vec{H} \cdot d \vec{s}=\iint \vec{J} \cdot d \vec{S}+\varepsilon \iint \frac{\partial \vec{E}}{\partial t} \cdot d \vec{S}
$$

with $\vec{B}=\mu \vec{H}$

$$
\vec{D}=\varepsilon \vec{E}
$$

Maxwell equations valid

$$
\vec{J}=\rho \vec{v}+\sigma \vec{E}
$$ in homogeneous, isotropic, continuous media

(7) NABLA, GRAD, ROT, DIV and LAPLACIAN OPERATORS

$\operatorname{div} \vec{E} \equiv \vec{\nabla} \cdot \vec{E}=\frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{s}}{\partial s}$
$\Delta \rho \equiv \nabla^{2} \rho=$ Laplacian operator
$=\frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial^{2} \rho}{\partial y^{2}}+\frac{\partial^{2} \rho}{\partial s^{2}}$

\(\left.\overrightarrow{\operatorname{grad}} \rho=\left\lvert\, \begin{array}{c}\frac{\partial \rho}{\partial r}

\frac{1}{r}\left(\frac{\partial \rho}{\partial \vartheta}\right.\end{array}\right.\right) \overrightarrow{\operatorname{rot}} \vec{E}=|\)| $\frac{1}{r}\left(\frac{\partial E_{s}}{\partial \vartheta}\right)-\frac{\partial E_{\theta}}{\partial s}$ |
| :---: |
| $\frac{\partial \rho}{\partial s}$ |

$$
\operatorname{div} \vec{E}=\frac{1}{r} \frac{\partial}{\partial r}\left(r E_{r}\right)+\frac{1}{r} \frac{\partial E_{\theta}}{\partial \theta}+\frac{\partial E_{s}}{\partial s}
$$

$$
\Delta \rho=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \rho}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \rho}{\partial \theta^{2}}+\frac{\partial^{2} \rho}{\partial s^{2}}
$$

(8) GENERAL FIELD MATCHING CONDITIONS

Consider a surface separating two media "1" and "2". The following boundary conditions can be derived from Maxwell equations for the normal (\perp) and parallel (II) components of the fields at the surface

where Σ is the surface charge density and \vec{K} is the surface current density

(9) USEFUL RELATIONS / NOTIONS

- Gaussian distribution $\lambda(s)=\frac{q}{\sqrt{2 \pi} \sigma_{s}} e^{-\frac{s^{2}}{2 \sigma_{s}^{2}}}$
- Equation of motion (and solutions) of an harmonic oscillator (which will be very often used) $\Rightarrow>$ The best way to keep something under control (i.e. stable) is to make it oscillate!
- MKSA units are used here, whereas CGS units can be found in several books and publications => Conversion from CGS to MKSA

$$
\frac{4 \pi}{c}=Z_{0}=120 \pi \Omega
$$

$$
\frac{e^{2}}{m_{0} c^{2}}=r_{0}=\text { Classical radius of the particle }
$$

- The engineer convention is also adopted ($e^{j \omega t}$) instead of the physicist's one ($e^{-i \omega t}$)
- Transposition of the product of 2 matrices
- Inversion of a 2×2 matrix $\quad M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
\Rightarrow \quad M^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

$\int_{-\infty}^{+\infty} e^{-a t^{2}} d t=\sqrt{\frac{\pi}{a}}$

$$
\int_{-\infty}^{+\infty} e^{-\left(a t^{2}+b t+c\right)} d t=\sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4 a}-c}
$$

$\cos (a+b)=\cos a \cos b-\sin a \sin b$
$\cos (a-b)=\cos a \cos b+\sin a \sin b$
$\sin (a+b)=\sin a \cos b+\sin b \cos a$

- $\sin (a-b)=\sin a \cos b-\sin b \cos a$
- Rotation (by an angle + Ф / 2) matrix

$$
R=\left[\begin{array}{cc}
\cos \frac{\Phi}{2} & -\sin \frac{\Phi}{2} \\
\sin \frac{\Phi}{2} & \cos \frac{\Phi}{2}
\end{array}\right]
$$

$\quad\left(\vec{v}_{1} \times \vec{v}_{2}\right)^{2}=\vec{v}_{1}^{2} \vec{v}_{2}^{2}-\left(\vec{v}_{1} \cdot \vec{v}_{2}\right)^{2}$
$\int_{0}^{s} \frac{d t}{1+t^{2}}=\arctan s$

(10) Units of physical quantities

Quantity	unit	SI unit	SI derived unit
Capacitance	F (farad)	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$	C / V
Electric charge	C (coulomb)	As	
Electric potential	V (volt)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$	$\mathrm{~W} / \mathrm{A}$
Energy	J (joule)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$	Nm
Force	N (newton)	$\mathrm{m} \mathrm{kg} \mathrm{s}^{-2}$	N
Frequency	Hz (hertz)	s^{-1}	
Inductance	H (henry)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$	$\mathrm{~Wb} / \mathrm{A}$
Magnetic flux	Wb (weber)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$	Vs
Magnetic flux density	T (tesla)	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$	$\mathrm{~Wb} / \mathrm{m}^{2}$
Power	W (watt)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$	$\mathrm{~J} / \mathrm{s}$
Pressure	Pa (pascal)	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$	$\mathrm{~N} / \mathrm{m}^{2}$
Resistance	Ω (ohm)	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$	$\mathrm{~V} / \mathrm{A}$

(11) Fundamental physical constants

Physical constant	symbol	value	unit
Avogadro's number	N_{A}	6.0221367×10^{23}	$/ \mathrm{mol}$
atomic mass unit $\left(\frac{1}{12} m\left(\mathrm{C}^{12}\right)\right)$	m_{u} or u	$1.6605402 \times 10^{-27}$	kg
Boltzmann's constant	k	1.380658×10^{-23}	$\mathrm{~J} / \mathrm{K}$
Bohr magneton	$\mu_{\mathrm{B}}=e \hbar / 2 m_{\mathrm{e}}$	$9.2740154 \times 10^{-24}$	$\mathrm{~J} / \mathrm{T}$
Bohr radius	$a_{0}=4 \pi \epsilon_{0} \hbar^{2} / m_{\mathrm{e}} c^{2}$	$0.529177249 \times 10^{-10}$	m
classical radius of electron	$r_{\mathrm{e}}=e^{2} / 4 \pi \epsilon_{0} m_{\mathrm{e}} c^{2}$	$2.81794092 \times 10^{-15}$	m
classical radius of proton	$r_{\mathrm{p}}=e^{2} / 4 \pi \epsilon_{0} m_{\mathrm{p}} c^{2}$	$1.5346986 \times 10^{-18}$	m
elementary charge	e	$1.60217733 \times 10^{-19}$	C
fine structure constant	$\alpha=e^{2} / 2 \epsilon_{0} h c$	$1 / 137.0359895$	
$m_{u} c^{2}$		931.49432	MeV
mass of electron	m_{e}	$9.1093897 \times 10^{-31}$	kg
$m_{\mathrm{e}} c^{2}$	0.51099906	MeV	
mass of proton		$1.6726231 \times 10^{-27}$	kg
$m_{\mathrm{p}} c^{2}$		938.27231	MeV
mass of neutron	m_{p}	$1.6749286 \times 10^{-27}$	kg
$m_{\mathrm{p}} c^{2}$		939.56563	MeV
molar gas constant	m_{n}	8.314510	$\mathrm{~J} / \mathrm{mol} \mathrm{K}$
neutron magnetic moment	$R=N_{\mathrm{A}} k$	μ_{n}	$-0.96623707 \times 10^{-26}$
nuclear magneton	$\mu_{\mathrm{p}}=e \hbar / 2 m_{u}$	$5.0507866 \times 10^{-27}$	$\mathrm{~J} / \mathrm{T}$
Planck's constant	h	6.626075×10^{-34}	J s
permeability of vacuum	μ_{0}	$4 \pi \times 10^{-7}$	$\mathrm{~N} / \mathrm{A}^{2}$
permittivity of vacuum	ϵ_{0}	$8.854187817 \times 10^{-12}$	$\mathrm{~F} / \mathrm{m}$
proton magnetic moment	μ_{p}	$1.41060761 \times 10^{-26}$	$\mathrm{~J} / \mathrm{T}$
proton g factor	2.792847386		
speed of light (exact)	$g_{\mathrm{p}}=\mu_{\mathrm{p}} / \mu_{\mathrm{N}}$	299792458	$\mathrm{~m} / \mathrm{s}$
vacuum impedance	c	376.7303	Ω

REFERENCES (1/2)

[1] E. Wilson, An Introduction to Particle Accelerators, Oxford University Press, 252 p, 2001
[2] W. Herr and B. Muratori, Concept of Luminosity (in Particle Colliders), CAS 2007, Daresbury [http://cern.ch/hc-beam-beam/talks/Daresbury luminosity.pdf]
[3] G. Guignard, Selection of Formulae Concerning Proton Storage Rings, CERN 77-10, ISR Division, 1977
[4] M.A. Furman, The Møller Luminosity Factor, LBNL-53553, CBP Note-543, 2003
[5] R. Hagedorn, Relativistic Kinematics, W.A. Benjamin, Inc., 1973
[6] M. Martini, An Introduction to Transverse Beam Dynamics in Accelerators, CERN/PS 96-11 (PA), 1996, [http://doc.cern.ch/archive/electronic/cern/preprints/ps//ps-96-011.pdi].
[7] L. Rinolfi, Longitudinal Beam Dynamics (Application to synchrotron), CERN/ PS 2000-008 (LP), 2000, [http://doc.cern.ch/archive/electronic/cern/preprints/ps//ps-2000-008.pdf]
[8] Theoretical Aspects of the Behaviour of Beams in Accelerators and Storage Rings: International School of Particle Accelerators of the 'Ettore Majorana' Centre for Scientific Culture, 10-22 November 1976, Erice, Italy, M.H. Blewett (ed.), CERN report 77-13 (1977)
[http://preprints.cern.ch/cgi-bin/setlink?base=cernrep\&categ=Yellow Report\&id=77-13]
[9] CERN Accelerator Schools [http://cas.web.cern.ch/cas]]
[10] K. SchindI, Space Charge, CERN-PS-99-012-DI, 1999
[http://doc.cern.ch/archive/electronic/cern/preprints/ps/ps-99-012.pdf]
[11] A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, New York: Wiley, 371 p, 1993 [http://www.slac.stanford.edu/~achao/wileybook.html]

REFERENCES (2/2)

[12] Web site on LHC Beam-Beam Studies [httpi/lwwwslap.cern.ch/collective/zwellhcbbl]
[13] Web site on Electron Cloud Effects in the LHC [httpillab-abp-rlc.web.cern.ch/ab-abp-rlc-ecloudl]
[14] LHC Design Report [http:l/ab-div.web.cern.ch/ab-div/Publications/LHC-DesignReport.htm]
[15] E. Métral and G. Rumolo, USPAS09 course on "Collective Effects in Beam Dynamics" [http://uspas.fnal.gov/materials/09uNM/CollectiveEfiects.htm]]
[16] E. Métral's web page [httpillemetral.web.cern.ch/emetrall where several courses (with some exercises, exams and corrections) can be found

