LMCI Above and Below Transition

E. Métral, G. Rumolo and B. Salvant

- Goal of the study: Check results previously obtained with a simple analytical model => Single-bunch interacting with both BB + SC impedances
 - http://cdsweb.cern.ch/record/524139/files/ps-2001-063.pdf
 - In the previous paper, there is also a reference to a paper by Ng in 1995 (<u>http://lss.fnal.gov/archive/test-fn/0000/fermilab-fn-0630.pdf</u>), discussing only BB impedance, using numerical solutions and mentioning that the intensity threshold is higher when the machine is operating below transition

PREDICTION

Figure 14: Stability diagram for the LMC instability below and above transition respectively for a proton bunch. The Keil-Schnell circle is represented by the dashed curve.

HEADTAIL simulation parameters (AT) => No SC yet

ĺ	Flag for bunch particles (1->protons 2->positrons 3&4->ions);	1	Flag_for_the_sc-rotation(0->local_centroid_1->bunch_centroid):	0
l	Average_electron_cloud_density_along_the_ring_(1/m^3):	1.e+12	Solenoid_field_[T]:	0.
	Number_of_particles_per_bunch:	1e+9	Switch_for_amplitude_detuning:	0
	Horizontal_beta_function_at_the_kick_sections_[m]:	40.	Coherent_centroid_motion_(0->off_1->on):	1
	Vertical_beta_function_at_the_kick_sections_[m]:	40.	El_distrib_(1->Rect_2->Ellip_3->[1_strp]_4->[2_strp]_5->Parab):	1
	Bunch_length_(rms_value)_[m]:	0.21	Linear_coupling_switch(1->on_0->off):	0
	Normalized_horizontal_emittance_(rms_value)_[um]:	3.0	Linear_coupling_coefficient_[1/m]:	0.0015
	Normalized_vertical_emittance_(rms_value)_[um]:	3.0	Average_dispersion_function_in_the_ring_[m]:	0.0
	Longitudinal_momentum_spread:	0.00093	Position of the stripes [units of sigmax]:	3.0
	Synchrotron_tune:	0.00324	Width of the stripes [units of sigmax]:	0.5
	Momentum_compaction_factor:	0.00192	Kick in the longitudinal direction [m]:	0.001
	Ring_circumference_length_[m]:	6911.	Number of turns between two bunch shape acquisitions:	10000
	Relativistic_gamma:	27.7286	Main rf voltage [V]:	0.6e+6
	Number_of_kick_sections:	1	Main rf harmonic number:	4620
	Number_of_laps:	30000	Initial 2nd rf voltage [V]:	0.
	Multiplication_factor_for_pipe_axes	10	Final 2nd rf cavity voltage [V]:	0.7e+6
	Multiplication_factor_for_pipe_axes	10	Harmonic number of 2nd rf:	18480
	Longitud_extension_of_the_bunch_(+/-N*sigma_z)	2.	Relative phase between cavities:	<u>я</u> .
	Horizontal_tune:	26.13	Start turn for 2nd rf ramp:	30000
	Vertical_tune:	26.18	End turn for 2nd rf ramp:	40000
	Horizontal_chromaticity_[Q'x]:	0.	Sextupolar kick switch(1-son 0-soff):	0
	Vertical_chromaticity_[Q'y]:	0.	Sextupole strength [1/m^2]:	- -0.254564
	Flag_for_synchrotron_motion:	1	Dispersion at the sextupoles [m]:	2.24
	Scale_factor_for_electrons_size:	4	Switch for losses (0->po losses 1->losses):	А.
	Switch_for_wake_fields:	1	Second order horizontal chromaticity (0x''):	
	Switch_for_pipe_geometry_(0->round_1->flat):	0	Second order vertical chromaticity (0v''):	й.
	Number_of_turns_for_the_wake:	1	Switch for boundary conditions(0->open space 1->rect box):	1
	Res_frequency_of_broad_band_resonator_[GHz]:	1.	Switch for random phase advance(0->po 1_>ves):	Ā
	Transverse_quality_factor:	1.	Switch for e-cooler(0-sno e-cooler 1-stuned e-cooler):	ñ
	Transverse_shunt_impedance_[MOhm/m]:	0.	length of the e-cooler [m]:	3.
	Res_frequency_of_longitudinal_resonator_[MHz]:	1000.	Switch for the damper:	<u>я</u>
	Longitudinal_quality_factor:	1.	Damper x agin:	0.1
	Longitudinal_shunt_impedance_[MUhm]:	0.23	Damper x noise amplitude:	1e-5
	Flag_for_the_tune_spread_(U->no_1->space_charge_2->random):	0	Damper v agin:	ло - Я.1
	Flag_for_the_e=flela_calc_methoa_(0=>ho_1=>soft_Gauss_2=>PlC):	0	Damper v noise amplitude:	1e_5
	magnetic_fiela_(U->ho_1->aipole_2->solenoia_3->combinea):	0	Conductivity of the resistive wall [1/0bm/m]:	1.e6
	Switch_for_initial_kick:	0	length of the resistive wall [m]:	<u>я.</u>
	x-kick_umplitude_dt_t=0_[sigmas]:	0.0 0.0	Switch for heta:	а. А
	y=kick_umpiituue_at_t=0_[sigmas]: Elaa for the proton engod obarge:	0.0 0	Switch for wake table:	ñ
	Flag for the point space_charge:	0 0	Linear Rate of Change of Momentum [GeV/c/sec]:	Й.
	<pre>rtug_ror_une_sc=rotutton(0=>tocut_centrotu_r=>ounch_centrotu): Soleroid field [T]:</pre>	0	Second Order Momentum Commaction Factor:	о. 0.
Т		υ.		

SPS bunch interacting with a resonator impedance (Q = 1, fr = 1 GHz and $Z_l/n = 10 \Omega$), changing the transition energy to go from AT to BT

In fact, looking at the evolution of the longitudinal distribution, it seems as if the core of the bunch is shortening but not the tails

case studied: Keep the same transition 2nd energy, bunch length and momentum spread 0.40 $\begin{array}{c} \text{Im } 0.35\\ 0.30\\ 0.25\\ 0.20\\ 0.15\\ 0.15\\ \end{array}$ Value to be entered in HEADTAIL: $R_l = \frac{Z_l}{n} \times \frac{f_r}{f_0} = 0.23 \text{ M}\Omega$ 0.10 0.5 1.5 2.0 0.0 1.0 bunch population in 10^{11} p/b a0.0020 0.0018 0.0016 0.0014 0.0012 0.0010 s 0.5 rms long. emittance ϵ_l in eVs 5.0 eVitance ϵ_l in eVs 7.0 rm 0.1 0.5 1.5 2.0 1.0 0.5 1.0 1.5 0.0 2.0 bunch population in 10^{11} p/b bunch population in 10^{11} p/b

Elias Métral, Impedance Meeting, 03/03/2010

CONCLUSIONS AND NEXT STEPS

- The simulation case corresponding to the theoretical prediction is the 1st one (Case AT and BT obtained by changing the transition energy => In this case, the low-intensity bunch length, momentum spread and longitudinal emittance are the same)
 - The prediction of a higher intensity threshold below transition is confirmed (factor ~ 1.5 compared to ~ 1.7 estimated) assuming a BB impedance alone
 - Issue with the increase of the longitudinal emittance BT?
 - In HEADTAIL, there is a switch to have the sinusoidal (i.e. nonlinear) bucket with space charge, but no linear force with space charge => Should be implemented to continue the analysis with SC