#### **JUAS**

#### LONGITUDINAL BEAM DYNAMICS

#### Elias Métral (CERN BE Department)

The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course in 2010 (I already gave this course in 2011-12-13-14) and who inherited them from Roberto Corsini (CERN-BE), who gave this course in the previous years, based on the ones written by Louis Rinolfi (CERN-BE) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP)):

http://cdsweb.cern.ch/record/446961/files/ps-2000-008.pdf

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well:

http://cdsweb.cern.ch/record/235242/files/p253.pdf

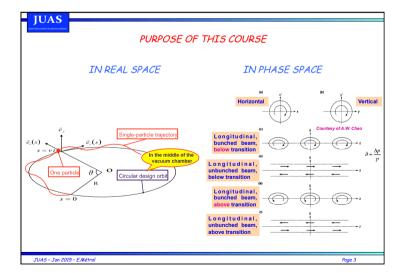
I attended the course given by Louis Rinolfi in 1996 and was his assistant in 2000 and 2001 (and the assistant of Michel Martini for his course on transverse beam dynamics)

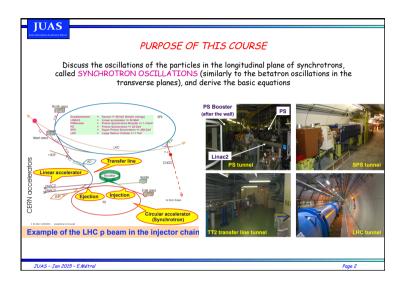
This course and related exercises / exams (as well as other courses) can be found in my web page: http://emetral.web.cern.ch/emetral/

Assistant since last year: Elena Benedetto (CERN BE Department)

JUAS - Jan 2015 - E.Métral

Page 1





## **JUAS**

#### 8 Lectures

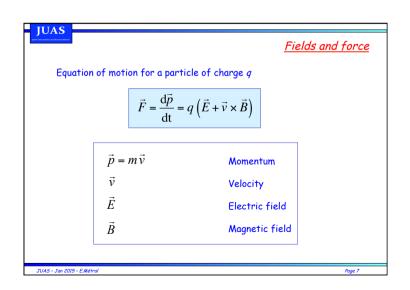
#### 4 Tutorials

Fields & Forces
Relativity
Acceleration (electrostatic, RF)
Synchrotrons
Longitudinal phase space
Momentum Compaction
Transition energy
Synchrotron oscillations
RF manipulations
The ESME simulation code

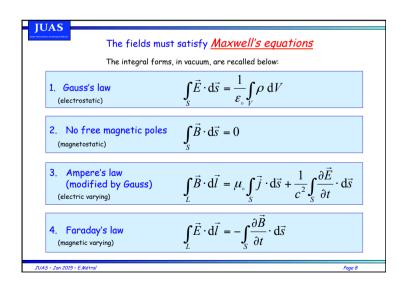
Examination: WE 11/02/2015 (09:15 to 10:45)

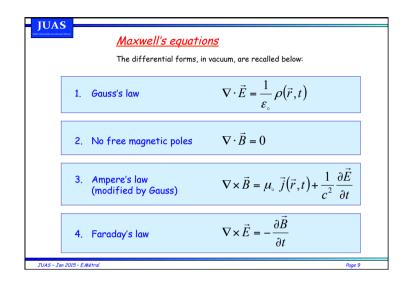
JUAS - Jan 2015 - E.Métro

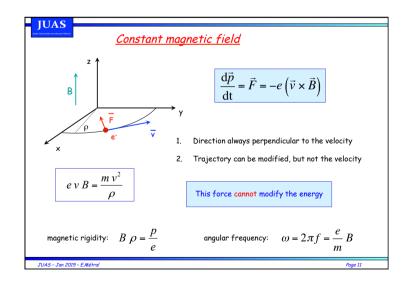
| WEEK 2         |                                         |                                   |                                                         |                                                         |                                                         |                |  |  |
|----------------|-----------------------------------------|-----------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------|--|--|
|                | Monday<br>Jan 19 <sup>th</sup>          | Tuesday<br>Jan 20 <sup>th</sup>   | Wednesday<br>Jan 21 <sup>st</sup>                       | Thursday<br>Jan 22 <sup>nd</sup>                        | Friday<br>Jan 23 <sup>rd</sup>                          |                |  |  |
| 09:15          | Transverse Dynamics<br>lecture          | Longitudinal Dynamics<br>lecture  | Transverse Dynamics<br>lecture                          | Transverse Dynamics<br>lecture                          | Longitudinal Dynamics<br>lecture                        | 09:15          |  |  |
| 10:15<br>10:30 | A. Latina                               | E. Métral                         | A. Latina                                               | A. Latina                                               | E. Métral                                               | 10:15<br>10:30 |  |  |
|                | Coffee Break                            | Coffee Break                      | Coffee Break                                            | Coffee Break                                            | Coffee Break                                            |                |  |  |
|                | Transverse Dynamics<br>lecture          | Longitudinal Dynamics<br>tutorial | Longitudinal Dynamics<br>lecture                        | Longitudinal Dynamics<br>lecture                        | Longitudinal Dynamics<br>lecture                        | 10.00          |  |  |
| 11:30          | A. Latina                               | E. Métral / E. Benedetto          | E. Métral                                               | E. Métral                                               | E. Métral                                               | 11:30          |  |  |
|                | Transverse Dynamics<br>tutorial         | Transverse Dynamics<br>lecture    | Longitudinal Dynamics<br>tutorial                       | Longitudinal Dynamics<br>lecture                        | Longitudinal Dynamics<br>tutorial                       |                |  |  |
| 12:30          | A. Latina                               | A. Latina                         | E. Métral / E. Benedetto                                | E. Métral                                               | E. Métral / E. Benedetto                                | 12:30          |  |  |
|                | LUNCH                                   | LUNCH                             | LUNCH                                                   | LUNCH                                                   | LUNCH                                                   | 1              |  |  |
| 14:00          |                                         | Exercises in computer room        |                                                         |                                                         | Exercises in computer room                              |                |  |  |
|                | Bus leaves at 13:30 from<br>JUAS        | Transverse Dynamics<br>tutorial   | Longitudinal Dynamics<br>lecture                        | Transverse Dynamics<br>tutorial                         | Longitudinal Dynamics<br>tutorial                       |                |  |  |
| 15:00          |                                         | A. Latina / J. Resta Lopez        | E. Métral                                               | A. Latina / J. Resta Lopez                              | E. Métral / E. Benedetto                                | 15:00          |  |  |
|                | VISIT                                   | Longitudinal Dynamics<br>lecture  | Transverse Dynamics<br>tutorial                         | Transverse Dynamics<br>lecure                           | Transverse Dynamics<br>tutorial                         | 10.00          |  |  |
| 16:00          | ,                                       | E. Métral                         | A. Latina                                               | A. Latina / J. Resta Lopez                              | A. Latina                                               |                |  |  |
| 16:00          | CERN                                    | Coffee Break                      | Coffee Break                                            | Coffee Break                                            | Coffee Break                                            | 16:00<br>16:15 |  |  |
| 17:15          | (Visit of CTF3 and<br>Synchrocyclotron) | Intro. to MADX  G. Sterbini       | MADX  G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster | MADX  G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster | MADX  G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster | 17:15          |  |  |
|                | Return scheduled at 18:00               | MADX G. Sterbini/A. Latina / L.   | MADX  G. Sterbini/ A. Latina / L.                       |                                                         |                                                         |                |  |  |
| 18:15          |                                         | Resta Lopez / N.Fuster            | Resta Lopez / N.Fuster                                  | l                                                       |                                                         |                |  |  |

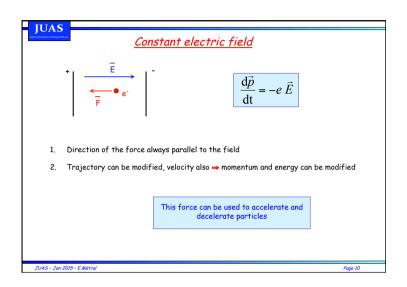


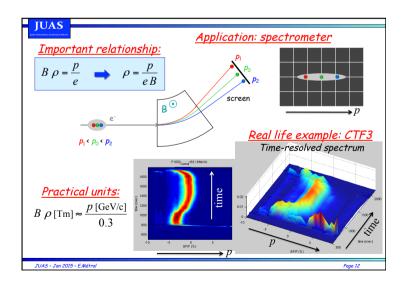


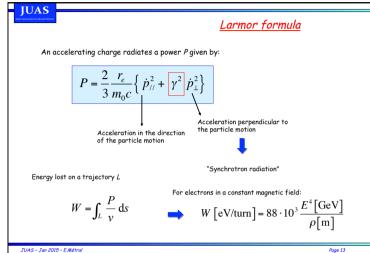


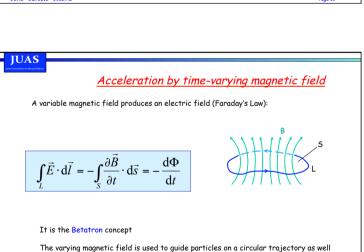






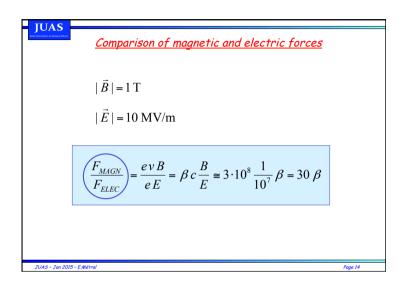


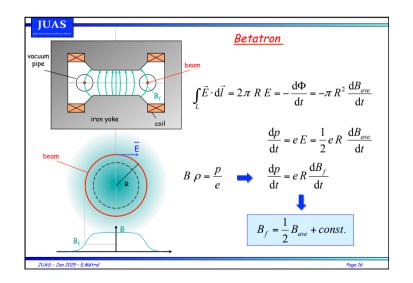


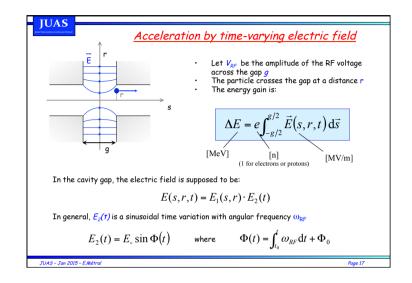


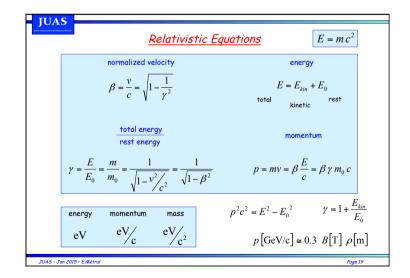
Page 15

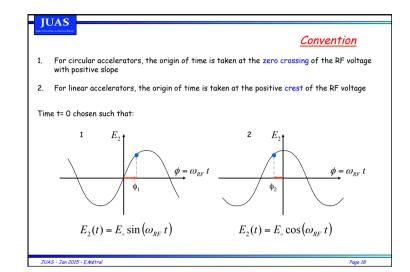
as for acceleration

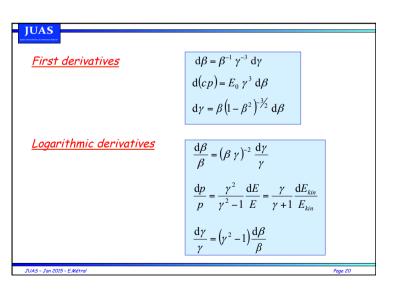


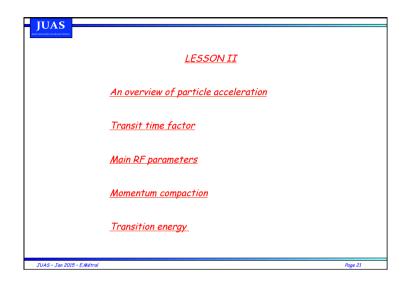


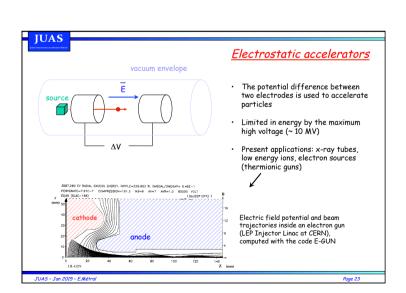


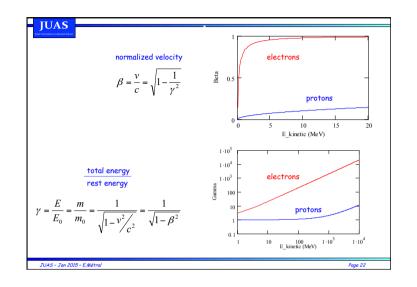


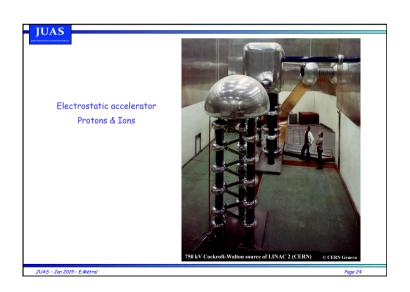


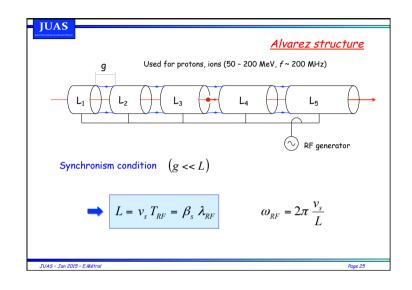


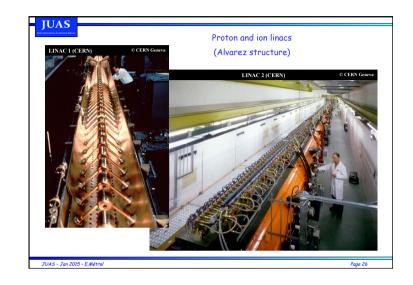


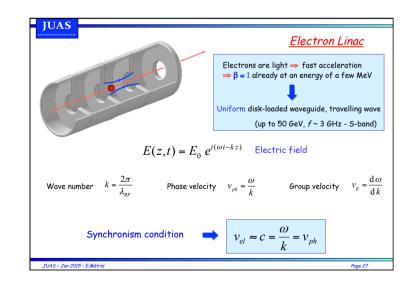


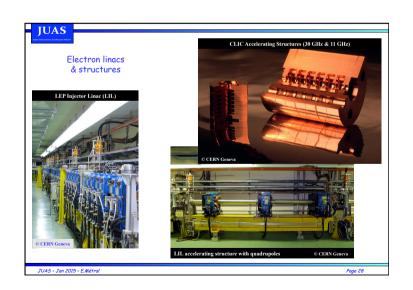


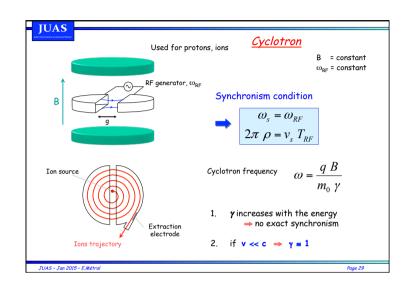


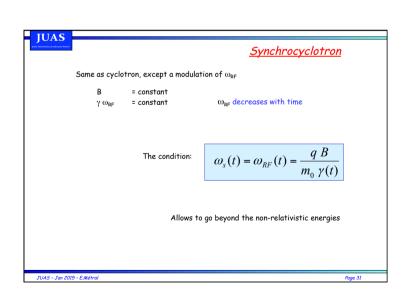




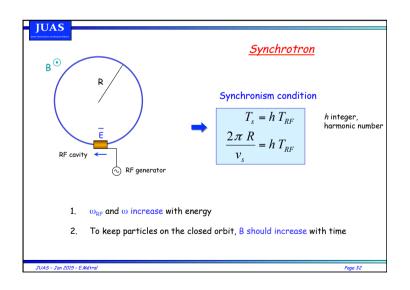


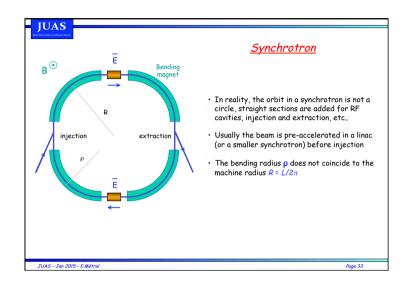












#### Parameters for circular accelerators

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$R = \frac{\gamma \ v \ m_0}{aR}$$

2. The synchronicity condition: The revolution frequency can be expressed as:

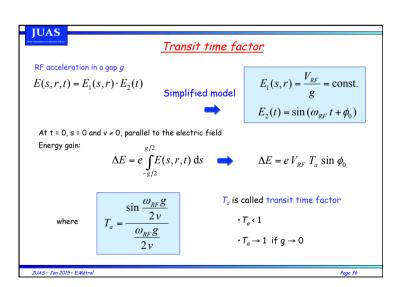
$$f = \frac{e B}{2\pi \gamma m_0}$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

| Machine                | Energy (y) | Velocity | Field  | Orbit | Frequency |
|------------------------|------------|----------|--------|-------|-----------|
|                        |            |          |        |       |           |
| Cyclotron              | ~ 1        | var.     | const. | ~ v   | const.    |
| Synchrocyclotron       | var.       | var.     | B(r)   | ~ p   | B(r)/γ(t) |
| Proton/Ion synchrotron | var.       | var.     | ~ p    | R     | ~ v       |
| Electron synchrotron   | var.       | const.   | ~ p    | R     | const.    |

JUAS - Jan 2015 - E.Métral Page 35





#### JUAS

#### Transit time factor II

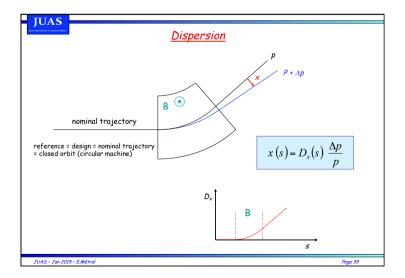
In the general case, the transit time factor is given by:

$$T_a = \frac{\int_{-\infty}^{+\infty} E_1(s, r) \cos\left(\omega_{RF} \frac{s}{v}\right) ds}{\int_{-\infty}^{+\infty} E_1(s, r) ds}$$

It is the ratio of the peak energy gained by a particle with velocity  $\nu$  to the peak energy gained by a particle with infinite velocity.

JUAS - Jan 2015 - E.Métral

Page 37



#### **JUAS**

#### I. Voltage, phase, frequency

#### Main RF parameters

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$E(s,t) = E_1(s) \cdot E_2(t)$$

$$E_2(t) = E_0 \sin \left[ \int_{t_0}^{t} \omega_{RF} \, dt + \phi_0 \right]$$

$$\omega_{RF} = 2 \pi f_{RF}$$

$$\Delta E = e V_{RF} T_a \sin \phi_0$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the phase

#### II. Harmonic number

$$T_{rev} = h T_{RF} \implies f_{RF} = h f_{rev}$$

rev = revolution frequency = frequency of the RF = harmonic number harmonic number in different machines:

AA EPA PS SPS 1 8 20 4620

JUAS - Jan 2015 - E.Métral

Page 38

#### **JUAS**

#### Momentum compaction factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum p.

For a particle with a momentum p +  $\Delta p$  the trajectory length can be different from the length L of the nominal trajectory.

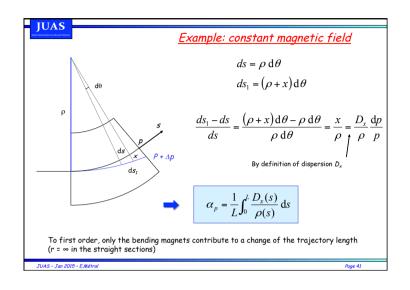
The momentum compaction factor is defined by the ratio:

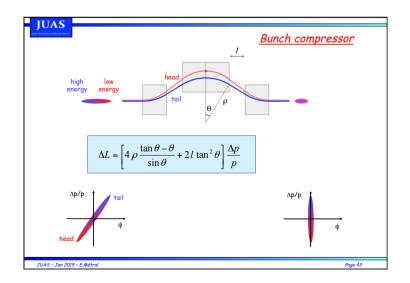
$$\alpha_p = \frac{dL/L}{dp/p}$$

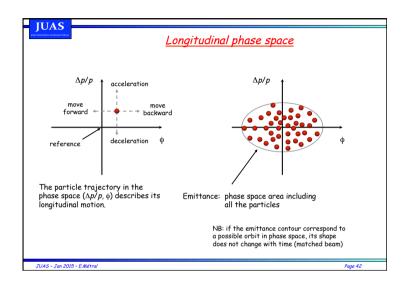
Therefore, for small momentum deviation, to first order it is:

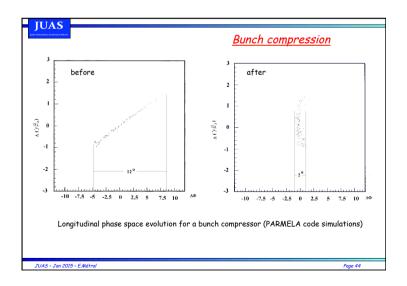
$$\frac{\Delta L}{L} = \alpha_p \frac{\Delta p}{p}$$

JUAS - Jan 2015 - E.Métral









#### Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p. For a particle with a momentum deviation  $\Delta p$  produces an orbit length variation  $\Delta C$  with:

For B = const.

$$\frac{C}{C} = \alpha_p \frac{\Delta p}{p}$$

 $\frac{\Delta C}{C} = \alpha_p \frac{\Delta p}{p}$   $C = 2\pi R$ 

The momentum compaction factor is defined by the ratio:

$$\alpha_p = \frac{dC_C}{dp/p} = \frac{dR_R/R}{dp/p}$$
 and  $\alpha_p = \frac{1}{C} \int_C \frac{D_x(s)}{\rho(s)} ds$ 

$$\alpha_p = \frac{1}{C} \int_C \frac{D_x(s)}{\rho(s)} \, \mathrm{d}s$$

N.B.: in most circular machines,  $\alpha_n$  is positive  $\Rightarrow$  higher momentum means longer circumference

JUAS - Jan 2015 - E.Métral

Page 45

#### Momentum compaction as a function of magnetic field

Definition of average magnetic field

average 
$$\langle B \rangle = \frac{1}{2\pi R} \int_{C} B_{f} \, ds = \frac{1}{2\pi R} \left( \int_{straights} B_{f} \, ds + \int_{magnets} B_{f} \, ds \right)$$

$$\langle B \rangle = \frac{B_{f} \, \rho}{R} \qquad = 0 \qquad 2\pi \, \rho \, B_{f}$$

$$\Rightarrow \frac{d \langle B \rangle}{\langle B \rangle} = \frac{d \, B_{f}}{B_{f}} + \frac{d \, \rho}{\rho} - \frac{d \, R}{R}$$

$$\langle B \rangle R = \frac{p}{e} \qquad \Rightarrow \frac{d \langle B \rangle}{\langle B \rangle} + \frac{d \, R}{R} = \frac{d \, p}{p}$$

For 
$$\beta_r$$
 = const. 
$$\alpha_p = 1 - \frac{\mathrm{d} < B >}{< B >} / \frac{\mathrm{d} \ p}{p}$$

JUAS - Jan 2015 - E.Métral

Page 47

## **IUAS**

#### Momentum compaction as a function of energy

$$E = \frac{p c}{\beta} \qquad \Longrightarrow \qquad \frac{dE}{E} = \beta^2 \frac{dp}{p}$$

$$\alpha_p = \beta^2 \frac{E}{R} \frac{\mathrm{d}R}{\mathrm{d}E}$$

JUAS - Jan 2015 - E.Métral

Page 46

#### **JUAS**

#### Transition energy

Proton (ion) circular machine with an positive

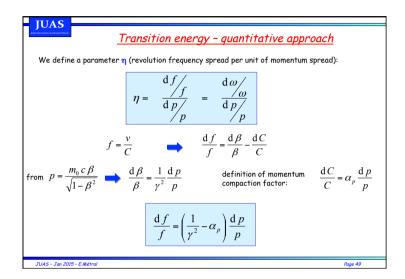
- 1. Momentum larger than the nominal  $(p + \Delta p) \Rightarrow longer orbit (C+\Delta C)$
- 2. Momentum larger than the nominal  $(p + \Delta p) \Rightarrow$  higher velocity  $(v + \Delta v)$

What happens to the revolution frequency f = v/C?

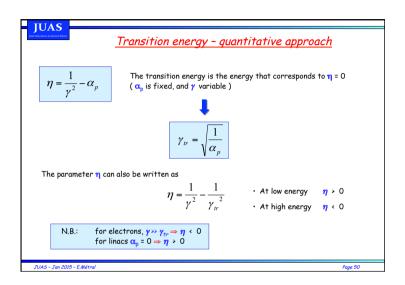
- · At low energy, vincreases faster than C with momentum
- At high energy v = c and remains almost constant
- There is an energy for which the velocity variation is compensated by the trajectory variation ⇒ <u>transition energy</u>

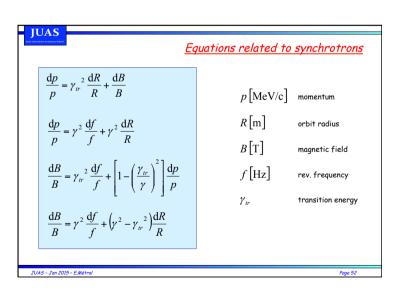
Below transition: higher energy ⇒ higher revolution frequency Above transition: higher energy > lower revolution frequency

JUAS - Jan 2015 - E.Métral









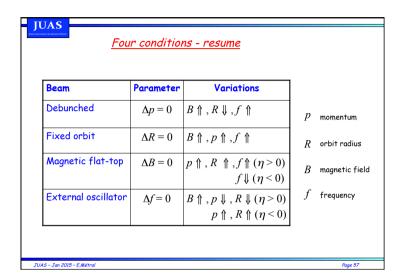
**JUAS** I - Constant radius dR = 0Beam maintained on the same orbit when energy varies  $\frac{\mathrm{d}p}{p} = \gamma^2 \, \frac{\mathrm{d}f}{f}$ If p increases B increases f increases

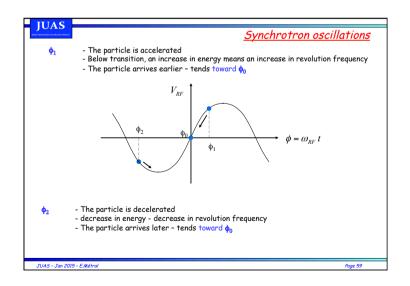
JUAS - Jan 2015 - E.Métral Page 53

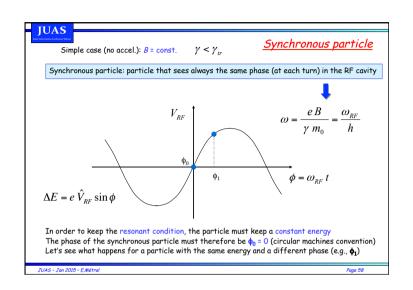
JUAS III - Magnetic flat-top dB = 0Beam bunched with constant magnetic field  $\frac{\mathrm{d}p}{p} = \gamma_{tr}^2 \frac{\mathrm{d}R}{R} \qquad \frac{\mathrm{d}B}{B} = 0 = \gamma_{tr}^2 \frac{\mathrm{d}f}{f} + \left[1 - \left(\frac{\gamma_{tr}}{\gamma}\right)^2\right] \frac{\mathrm{d}p}{p}$  $\frac{\mathrm{d}B}{B} = 0 = \gamma^2 \frac{\mathrm{d}f}{f} + (\gamma^2 - \gamma_{tr}^2) \frac{\mathrm{d}R}{R}$ If p increases R increases f increase  $\gamma < \gamma_{tr}$ decreases  $\gamma > \gamma_{tr}$ JUAS - Jan 2015 - E.Métral Page 55

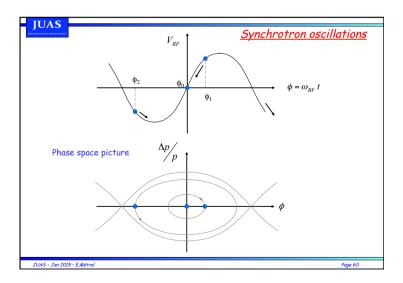
**JUAS** II - Constant energy dp = 0 $V_{RF} = 0$ Beam debunches  $\frac{\mathrm{d}p}{p} = 0 = \gamma_{tr}^2 \frac{\mathrm{d}R}{R} + \frac{\mathrm{d}B}{B}$  $\frac{\mathrm{d}p}{p} = 0 = \gamma^2 \frac{\mathrm{d}f}{f} + \gamma^2 \frac{\mathrm{d}R}{R}$ If B increases R decreases f increases JUAS - Jan 2015 - E.Métral Page 54

**JUAS** IV - Constant frequency df = 0Beam driven by an external oscillator  $\frac{\mathrm{d}p}{p} = \gamma^2 \frac{\mathrm{d}R}{R} \qquad \qquad \frac{\mathrm{d}B}{B} = \left[1 - \left(\frac{\gamma_{tr}}{\gamma}\right)^2\right] \frac{\mathrm{d}p}{p}$  $\frac{\mathrm{d}B}{B} = \left(\gamma^2 - \gamma_{tr}^2\right) \frac{\mathrm{d}R}{R}$ If p increases R increases
B decreases  $\gamma < \gamma_{tr}$ increase  $\gamma > \gamma_{tr}$ JUAS - Jan 2015 - E.Métral





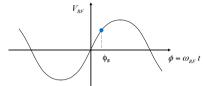






Case with acceleration B increasing  $\gamma < \gamma_{tr}$ 

# Synchronous particle



$$\Delta E = e\hat{V}_{RF}\sin\phi$$

The phase of the synchronous particle is now  $\phi_{\rm s} > 0$  (circular machines convention)

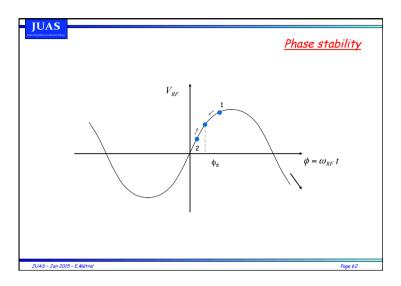
The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R  $_{VVM}$ .

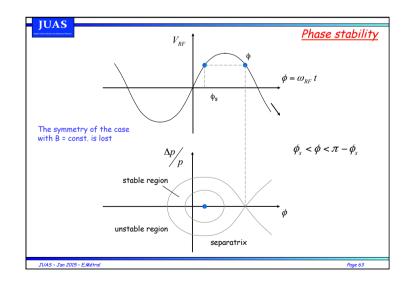
$$R = \frac{\gamma \ v \ m_0}{eR}$$

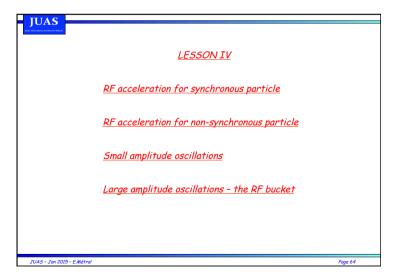
The RF frequency is increased as well in order to keep the resonant condition

$$\omega = \frac{e B}{\gamma m_0} = \frac{\omega_{RF}}{h}$$

JUAS - Jan 2015 - E.Métral







## RF acceleration for synchronous particle - energy gain

Let's assume a synchronous particle with a given  $\phi_c > 0$ 

We want to calculate its rate of acceleration, and the related rate of increase of B, f.

$$p = eB\rho$$

Want to keep  $\rho$  = const

$$\frac{\mathrm{d}p}{\mathrm{d}t} = e \,\rho \,\frac{\mathrm{d}\,B}{\mathrm{d}t} = e \,\rho \,\dot{B}$$

$$(\Delta p)_{turn} = e \rho \dot{B} T_{rev} = e \rho \dot{B} \frac{2\pi R}{\beta c}$$

We know that (relativistic equations) :  $\Delta p = \frac{\Delta E}{\beta c}$ 



JUAS - Jan 2015 - E.Métral

# **JUAS**

# RF acceleration for synchronous particle - frequency

$$\omega_{RF} = h \, \omega_s = h \frac{e}{m} < B > \qquad \left( v = \frac{e}{m} B \rho \right)$$

$$\omega_{RF} = h \frac{e}{m} \frac{\rho}{R} B$$

From relativistic equations:

$$\omega_{RF} = \frac{hc}{R} \sqrt{\frac{B^2}{B^2 + (E_0/ec\rho)^2}}$$

$$B_0 = \frac{E_0}{ec\rho} \qquad \Longrightarrow \qquad f_{RF} = \frac{hc}{2\pi R} \left(\frac{B}{B_0}\right) \frac{1}{\sqrt{1 + (B/B_0)^2}}$$

JUAS - Jan 2015 - E.Métral

#### **IUAS**

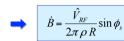
#### RF acceleration for synchronous particle - phase

$$(\Delta E)_{turn} = e \rho \dot{B} 2\pi R$$

On the other hand, for the synchronous particle: 
$$(\Delta E)_{turn} = e \hat{V}_{RF} \sin \phi_s$$

$$e \rho \dot{B} 2\pi R = e \hat{V}_{RF} \sin \phi_s$$

Knowing φ<sub>s</sub>, one can calculate the increase rate of the magnetic field needed for a given RF voltage:



2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:

$$\sin \phi_s = 2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}}$$



 $\sin \phi_s = 2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}} \implies \phi_s = \arcsin \left( 2\pi \rho R \frac{\dot{B}}{\hat{V}_{RF}} \right)$ 

JUAS - Jan 2015 - E.Métral

Page 66

#### **JUAS**

# Example: PS

At the CERN Proton Synchrotron machine, one has:

$$R = 100 \text{ m}$$

$$\dot{B} = 2.4 \text{ T/s}$$

100 dipoles with  $I_{eff}$  = 4.398 m. The harmonic number is 20

Calculate:

- The energy gain per turn
   The minimum RF voltage needed
   The RF frequency when B = 1.23 T (at extraction)

#### **JUAS**

# RF acceleration for non synchronous particle

Parameter definition (subscript "s" stands for synchronous particle):

 $f = f_s + \Delta f$  revolution frequency

 $\phi = \phi_s + \Delta \phi$  RF phase

 $p = p_s + \Delta p$  Momentum

 $E = E_s + \Delta E$  Energy

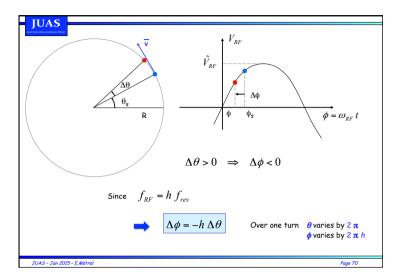
 $\theta = \theta_c + \Delta \theta$  Azimuth angle

$$ds = R d\theta$$

$$\theta(t) = \int_{t_0}^t \omega(\tau) \, \mathrm{d}\tau$$

JUAS - Jan 2015 - E.Métral

Page 69



#### **JUAS**

1. Angular frequency

# <u>Parameters versus φ</u>

$$\begin{split} \theta(t) &= \int_{t_0}^t \omega(\tau) \, \mathrm{d}\tau \qquad \Delta \omega = \frac{\mathrm{d}}{\mathrm{d}t} \big(\Delta \theta\big) \\ &= -\frac{1}{h} \frac{\mathrm{d}}{\mathrm{d}t} \big(\Delta \phi\big) \\ &= -\frac{1}{h} \frac{\mathrm{d}}{\mathrm{d}t} \big(\phi - \phi_s\big) \qquad \frac{\mathrm{d}\phi_s}{\mathrm{d}t} = 0 \text{ by definition} \\ &= -\frac{1}{h} \frac{\mathrm{d}\phi}{\mathrm{d}t} \end{split}$$

JUAS - Jan 2015 - E.Métral

2. Momentum 
$$\eta = \frac{\mathrm{d}\omega}{\mathrm{d}p} = \frac{\Delta\omega}{\Delta p}$$

$$\Delta p = \frac{p_s}{\omega_s} \frac{\Delta\omega}{\eta} = \frac{p_s}{\omega_s \eta} \left(-\frac{1}{h} \frac{\mathrm{d}\phi}{\mathrm{d}t}\right)$$

$$\Delta p = \frac{-p_s}{\omega_s \eta h} \frac{\mathrm{d}\phi}{\mathrm{d}t}$$
3. Energy 
$$\frac{\mathrm{d}E}{\mathrm{d}p} = v$$

$$\Delta E = -\frac{R}{\eta} \frac{p_s}{\mathrm{d}t}$$

$$\Delta E = -\frac{R}{\eta} \frac{p_s}{\mathrm{d}t}$$

#### Derivation of equations of motion

Energy gain after the RF cavity

$$(\Delta E)_{turn} = e \hat{V}_{RF} \sin \phi$$

$$(\Delta p)_{num} = \frac{e}{\omega R} \hat{V}_{RF} \sin \phi$$

Average increase per time unit

$$\frac{\left(\Delta p\right)_{num}}{T_{rev}} = \frac{e}{2\pi \, R} \, \hat{V}_{RF} \sin \phi \qquad 2\pi \, R \, \dot{p} = e \, \hat{V}_{RF} \sin \phi \qquad \text{valid for any particle} \, !$$



 $2\pi (R \dot{p} - R_s \dot{p}_s) = e \hat{V}_{RF} (\sin \phi - \sin \phi_s)$ 

JUAS - Jan 2015 - E.Métral

Page 73

# Equations of motion I

$$\begin{cases} \frac{\mathrm{d}(\Delta p)}{\mathrm{d}t} = A\left(\sin\phi - \sin\phi_s\right) \\ \frac{\mathrm{d}\phi}{\mathrm{d}t} = B\,\Delta p \end{cases}$$
 with 
$$A = \frac{e\,\hat{V}_{RF}}{2\pi\,R_s}$$

with 
$$A = \frac{e \, \hat{V}_{RF}}{2\pi \, R}$$

$$B = -\frac{\eta h}{p_s} \frac{\beta_s c}{R_s}$$

JUAS - Jan 2015 - E.Métral

Page 75

#### **JUAS**

## Derivation of equations of motion

After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$2\pi \frac{d}{dt} \left( \frac{\Delta E}{\omega_s} \right) = e \, \hat{V}_{RF} \left( \sin \phi - \sin \phi_s \right)$$

An approximated version of the above is

$$\frac{\mathrm{d}(\Delta p)}{\mathrm{d}t} = \frac{e\,\hat{V}_{RF}}{2\pi\,R_{s}} \left(\sin\phi - \sin\phi_{s}\right)$$

Which, together with the previously found equation

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = -\frac{\omega_s \eta h}{p_s} \Delta p$$

Describes the motion of the non-synchronous particle in the longitudinal phase space ( $\Delta p, \phi$ )

JUAS - Jan 2015 - E.Métral

#### **JUAS**

#### Equations of motion II

1. First approximation - combining the two equations:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left( \frac{1}{B} \frac{\mathrm{d}\phi}{\mathrm{d}t} \right) - A \left( \sin \phi - \sin \phi_s \right) = 0$$

We assume that A and B change very slowly compared to the variable  $\Delta \phi = \phi - \phi_s$ 

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}t^2} + \frac{\Omega_s^2}{\cos \phi_s} \left( \sin \phi - \sin \phi_s \right) = 0$$

with  $\frac{\Omega_s^2}{\cos\phi_s} = -AB$  We can also define:  $\Omega_0^2 = \frac{\Omega_s^2}{\cos\phi_s} = \frac{e\,\hat{V}_{RF}\eta\,h\,c^2}{2\pi\,R_s^2\,E_s}$ 

JUAS - Jan 2015 - E.Métral

#### Small amplitude oscillations

2. Second approximation

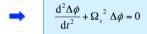
$$\sin \phi = \sin(\phi_s + \Delta\phi)$$

$$= \sin \phi_s \cos \Delta\phi + \cos \phi_s \sin \Delta\phi$$

$$\Delta \phi \text{ small } \Rightarrow \sin \phi \cong \sin \phi_s + \cos \phi_s \Delta \phi$$

$$\frac{\mathrm{d}\phi_s}{\mathrm{d}t} = 0 \quad \Rightarrow \qquad \quad \frac{\mathrm{d}^2\phi}{\mathrm{d}t^2} = \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(\phi_s + \Delta\phi\right) = \frac{\mathrm{d}^2\Delta\phi}{\mathrm{d}t^2}$$

by definition



Harmonic oscillator!

JUAS - Jan 2015 - E.Métral

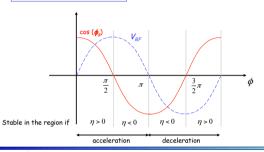
Page 77

**JUAS** 

## Stability condition for $\phi_s$

Stability is obtained when the angular frequency of the oscillator,  $\Omega_{\rm s}^{-2}$  is real positive:

$$\Omega_s^2 = \frac{e\hat{V}_{RF}\eta hc^2}{2\pi R_s^2 E_s}\cos\phi_s$$
  $\Rightarrow$   $\Omega_s^2 > 0$   $\Leftrightarrow$   $\eta\cos\phi_s > 0$ 



JUAS - Jan 2015 - E.Métral

Page 78

e+, e-

# Small amplitude oscillations - orbits

For  $\eta \cos \phi_s > 0$  the motion around the synchronous particle is a stable oscillation:

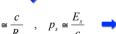
$$\begin{cases} \Delta \phi = \Delta \phi_{\text{max}} \sin(\Omega_s t + \phi_0) \\ \Delta p = \Delta p_{\text{max}} \cos(\Omega_s t + \phi_0) \end{cases}$$

with 
$$\Delta p_{\text{max}} = \frac{\Omega_s}{R} \Delta \phi_{\text{max}}$$

JUAS - Jan 2015 - E.Métral

# Lepton machines



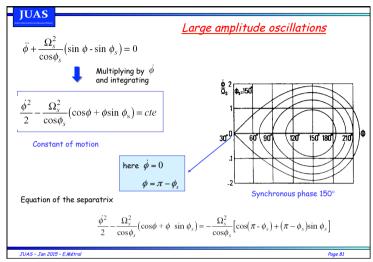


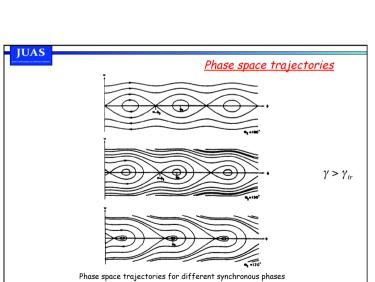
$$\omega_s \cong \frac{c}{R_s}$$
 ,  $p_s \cong \frac{E_s}{c}$   $\Longrightarrow$   $\Omega_s = \frac{c}{R_s} \left\{ -\frac{e \, \hat{V}_{RF} \, \alpha_p \, h}{2\pi \, E_s} \cos \phi_s \right\}^{1/2}$ 

Number of synchrotron oscillations per turn:

$$Q_s = \frac{\Omega_s}{\omega_s} = \left\{ -\frac{e\,\hat{V}_{RF}\,\alpha_p\,h}{2\pi\,E_s}\cos\phi_s \right\}^{1/2} \quad \text{"synchrotron tune"}$$

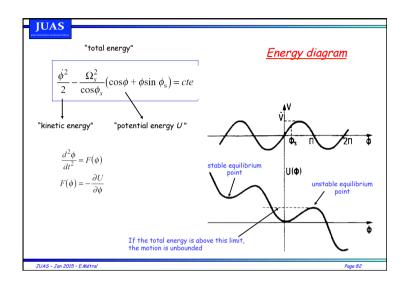
N.B: in these machines, the RF frequency does not change

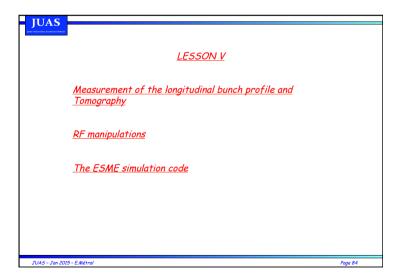


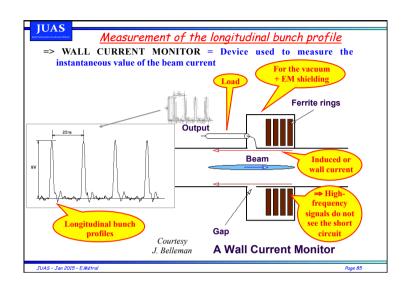


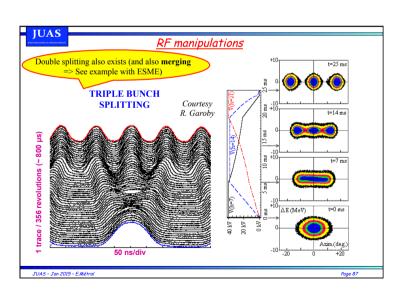
Page 83

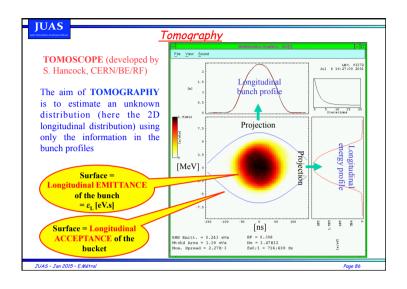
JUAS - Jan 2015 - E.Métral

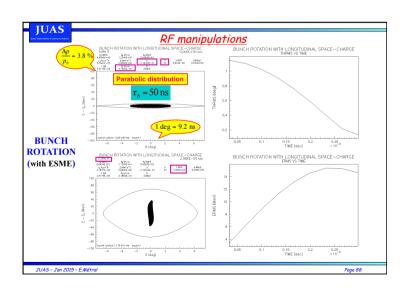












# The ESME simulation code Want to calculate the evolution of a distribution of particles in energy and azimuth as it is acted upon by the Radio Frequency (RF) system of a synchrotron or storage ring? => Use ESME code Several RF systems and many other effects can be included ESME => It is not an acronym. The name is that of the heroine of J. D. Salinger's short story "To Esme with Love and Squalor" Code initially developed during the years 1981-82 for the design of the Tevatron I Antiproton Source and first documented for general use in 1984 Homepage = http://www-ap.fnal.gov/ESME/

