LONGITUDINAL BEAM DYNAMICS

Elias Métral (CERN BE Department)

The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course in 2010 (I already gave this course in 2011-12-13-14) and who inherited them from Roberto Corsini (CERN-BE), who gave this course in the previous years, based on the ones written by Louis Rinolfi (CERN-BE) who held the course at JUAS from 1994 to 2002 (see CERN/PS 2000-008 (LP)):
hattp:/lcdsweb.cern.ch/record/44.69bi/files/ps-2000-008,pdf
Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN 94-01) has been used as well:
http:/lcdsweb.cern.ch/record/235242/files/p253,pdf
htrip://cdsweb,cern.ch/record/235242/files/io289.pdf
I attended the course given by Louis Rinolfi in 1996 and was his assistant in 2000 and 2001 (and the assistant of Michel Martini for his course on transverse beam dynamics)

This course and related exercises / exams (as well as other courses) can be found in my web page: hftp:/lemetrall web.cern.ch/emetrall

Assistant since last year: Elena Benedetto (CERN BE Department)

PURPOSE OF THIS COURSE

Discuss the oscillations of the particles in the longitudinal plane of synchrotrons, called SYNCHROTRON OSCILLATIONS (similarly to the betatron oscillations in the transverse planes), and derive the basic equations

Example of the LHC p beam in the injector chain

PURPOSE OF THIS COURSE

IN REAL SPACE

IN PHASE SPACE


```
8 Lectures
4 \text { Tutorials}
```

Fields \& Forces
Relativity
Acceleration (electrostatic, RF)
Synchrotrons
Longitudinal phase space
Momentum Compaction
Transition energy
Synchrotron oscillations
RF manipulations
The ESME simulation code

Examination: WE 11/02/2015 (09:15 to 10:45)

	Monday Jan $19^{\text {th }}$	Tuesday Jan $20^{\text {th }}$	Wednesday Jan $21^{\text {st }}$	Thursday Jan $22^{\text {nd }}$	Friday $\text { Jan } 23^{\mathrm{rd}}$
09:15	Transverse Dynamics lecture A. Latina	Longitudinal Dynamics lecture E. Métral	Transverse Dynamics lecture A. Latina	Transverse Dynamics lecture A. Latina	Longitudinal Dynamics lecture E. Métral
	Coffee Break				
	Transverse Dynamics lecture A. Latina	Longitudinal Dynamics tutorial E. Métral / E. Benedetto	Longitudinal Dynamics lecture E. Métral	Longitudinal Dynamics lecture E. Métral	Longitudinal Dynamics lecture E. Métral
12:30	Transverse Dynamics tutorial A. Latina	Transverse Dynamics lecture A. Latina	Longitudinal Dynamics tutorial E. Métral / E. Benedetto	Longitudinal Dynamics lecture E. Métral	Longitudinal Dynamics tutorial E. Métral / E. Benedetto
	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH
14:00	Bus leaves at 13:30 from JUAS	Exercises in computer room		Exercises in computer room	
		Transverse Dynamics tutorial A. Latina / J. Resta Lopez	Longitudinal Dynamics lecture E. Métral	Transverse Dynamics tutorial A. Latina / J. Resta Lopez	Longitudinal Dynamics tutorial E. Métral / E. Benedetto
15:00	VISIT AT	Longitudinal Dynamics lecture E. Métral	Transverse Dynamics tutorial A. Latina	Transverse Dynamics lecure A. Latina / J. Resta Lopez	Transverse Dynamics tutorial A. Latina
16:00	CERN	Coffee Break	Coffee Break	Coffee Break	Coffee Break
17:15	(Visit of CTF3 and Synchrocyclotron)	Intro. to MADX G. Sterbini	MADX G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster	MADX G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster	MADX G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster
18:15	Return scheduled at 18:00	MADX G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster	MADX G. Sterbini/ A. Latina /J. Resta Lopez / N.Fuster		

LESSON I

Fields \& forces

Acceleration by time-varying fields

Relativistic equations

Equation of motion for a particle of charge q

$$
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$\vec{p}=m \vec{v}$	Momentum
\vec{v}	Velocity
\vec{E}	Electric field
\vec{B}	Magnetic field

The fields must satisfy Maxwell's equations

The integral forms, in vacuum, are recalled below:

1. Gauss's law
(electrostatic)

$$
\int_{S} \vec{E} \cdot \mathrm{~d} \vec{s}=\frac{1}{\varepsilon_{0}} \int_{V} \rho \mathrm{~d} V
$$

3. Ampere's law (modified by Gauss) (electric varying)

$$
\int_{L} \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{\mathrm{o}} \int_{S} \vec{j} \cdot \mathrm{~d} \vec{s}+\frac{1}{c^{2}} \int_{S} \frac{\partial \vec{E}}{\partial t} \cdot \mathrm{~d} \vec{s}
$$

4. Faraday's law (magnetic varying)

$$
\int_{L} \vec{E} \cdot \mathrm{~d} \vec{l}=-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{s}
$$

Maxwell's equations

The differential forms, in vacuum, are recalled below:

1. Gauss's law

$$
\nabla \cdot \vec{E}=\frac{1}{\varepsilon_{o}} \rho(\vec{r}, t)
$$

2. No free magnetic poles

$$
\nabla \cdot \vec{B}=0
$$

3. Ampere's law (modified by Gauss)

$$
\nabla \times \vec{B}=\mu_{\circ} \vec{j}(\vec{r}, t)+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
$$

4. Faraday's law

$$
\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

Constant electric field

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=-e \vec{E}
$$

1. Direction of the force always parallel to the field
2. Trajectory can be modified, velocity also \Rightarrow momentum and energy can be modified

This force can be used to accelerate and decelerate particles

Constant magnetic field

$$
e v B=\frac{m v^{2}}{\rho}
$$

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=\vec{F}=-e(\vec{v} \times \vec{B})
$$

1. Direction always perpendicular to the velocity
2. Trajectory can be modified, but not the velocity

This force cannot modify the energy
magnetic rigidity: $\quad B \rho=\frac{p}{e}$
angular frequency: $\quad \omega=2 \pi f=\frac{e}{m} B$
nt Universities Accelerator School
Important relationship:

Application: spectrometer

$$
B \rho=\frac{p}{e} \Rightarrow \rho=\frac{p}{e B}
$$

Real life example: CTF3

 Time-resolved spectrumPractical units:
$B \rho[\mathrm{Tm}] \approx \frac{p[\mathrm{GeV} / \mathrm{c}]}{0.3}$

Larmor formula

An accelerating charge radiates a power P given by:

$$
P=\frac{2}{3} \frac{r_{e}}{m_{0} c}\left\{\dot{p}_{/ /}^{2}+\gamma^{2} \dot{p}_{\perp}^{2}\right\}
$$

"Synchrotron radiation"
Energy lost on a trajectory L

$$
W=\int_{L} \frac{P}{v} \mathrm{~d} s
$$

For electrons in a constant magnetic field:
$\Rightarrow W[\mathrm{eV} /$ turn $]=88 \cdot 10^{3} \frac{E^{4}[\mathrm{GeV}]}{\rho[\mathrm{m}]}$

Comparison of magnetic and electric forces

$$
\begin{aligned}
& |\vec{B}|=1 \mathrm{~T} \\
& |\vec{E}|=10 \mathrm{MV} / \mathrm{m}
\end{aligned}
$$

$$
\frac{F_{M A G N}}{F_{E L E C}}=\frac{e v B}{e E}=\beta c \frac{B}{E} \cong 3 \cdot 10^{8} \frac{1}{10^{7}} \beta=30 \beta
$$

Acceleration by time-varying magnetic field

A variable magnetic field produces an electric field (Faraday's Law):

$$
\int_{L} \vec{E} \cdot \mathrm{~d} \vec{l}=-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{s}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}
$$

It is the Betatron concept
The varying magnetic field is used to guide particles on a circular trajectory as well as for acceleration

Betatron

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=e E=\frac{1}{2} e R \frac{\mathrm{~d} B_{\text {ave }}}{\mathrm{d} t}
$$

$$
B \rho=\frac{p}{e} \quad \Rightarrow \frac{\mathrm{~d} p}{\mathrm{~d} t}=e R \frac{\mathrm{~d} B_{f}}{\mathrm{~d} t}
$$

$$
\downarrow
$$

$$
B_{f}=\frac{1}{2} B_{\text {ave }}+\text { const } .
$$

Acceleration by time-varying electric field

- Let $V_{R F}$ be the amplitude of the RF voltage across the gap g
- The particle crosses the gap at a distance r
- The energy gain is:

In the cavity gap, the electric field is supposed to be:

$$
E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)
$$

In general, $E_{2}(t)$ is a sinusoidal time variation with angular frequency $\omega_{R F}$

$$
E_{2}(t)=E_{\circ} \sin \Phi(t) \quad \text { where } \quad \Phi(t)=\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\Phi_{0}
$$

Convention

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$$
E_{2}(t)=E_{\mathrm{o}} \sin \left(\omega_{R F} t\right)
$$

$$
E_{2}(t)=E_{0} \cos \left(\omega_{R F} t\right)
$$

Relativistic Equations

$$
E=m c^{2}
$$

normalized velocity energy $\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}$ $E=E_{\text {kin }}+E_{0}$ total kinetic rest total energy rest energy	momentum
$\gamma=\frac{E}{E_{0}}=\frac{m}{m_{0}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{1}{\sqrt{1-\beta^{2}}}$	$p=m v=\beta \frac{E}{c}=\beta \gamma m_{0} c$

energy	momentum	mass				
eV	eV / c	$\mathrm{eV} / \mathrm{c}^{2}$	\quad	$p^{2} c^{2}=E^{2}-E_{0}{ }^{2}$	$\gamma=1+\frac{E_{\text {kin }}}{E_{0}}$	
---:	:---	---:				
	$p[\mathrm{GeV} / \mathrm{c}] \cong 0.3$	$B[\mathrm{~T}] \rho[\mathrm{m}]$				

First derivatives

$$
\begin{aligned}
& \mathrm{d} \beta=\beta^{-1} \gamma^{-3} \mathrm{~d} \gamma \\
& \mathrm{~d}(c p)=E_{0} \gamma^{3} \mathrm{~d} \beta \\
& \mathrm{~d} \gamma=\beta\left(1-\beta^{2}\right)^{-3 / 2} \mathrm{~d} \beta
\end{aligned}
$$

Logarithmic derivatives

$$
\begin{aligned}
& \frac{\mathrm{d} \beta}{\beta}=(\beta \gamma)^{-2} \frac{\mathrm{~d} \gamma}{\gamma} \\
& \frac{\mathrm{~d} p}{p}=\frac{\gamma^{2}}{\gamma^{2}-1} \frac{\mathrm{~d} E}{E}=\frac{\gamma}{\gamma+1} \frac{\mathrm{~d} E_{\text {kin }}}{E_{\text {kin }}} \\
& \frac{\mathrm{d} \gamma}{\gamma}=\left(\gamma^{2}-1\right) \frac{\mathrm{d} \beta}{\beta}
\end{aligned}
$$

LESSON II

An overview of particle acceleration

Transit time factor

Main RF parameters

Momentum compaction

Transition energy
normalized velocity

$$
\beta=\frac{v}{c}=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

vacuum envelope

Electrostatic accelerators

- The potential difference between two electrodes is used to accelerate particles
- Limited in energy by the maximum high voltage ($\sim 10 \mathrm{MV}$)
- Present applications: x-ray tubes, low energy ions, electron sources (thermionic guns)

Electric field potential and beam trajectories inside an electron gun (LEP Injector Linac at CERN), computed with the code E-GUN

Electrostatic accelerator
Protons \& Ions

Alvarez structure

Synchronism condition $\quad(g \ll L)$

$$
L=v_{s} T_{R F}=\beta_{s} \lambda_{R F} \quad \omega_{R F}=2 \pi \frac{v_{s}}{L}
$$

Proton and ion linacs
(Alvarez structure)

LINAC 1 (CERN)

LINAC 2 (CERN)
© CERN Geneva

Electron Linac

Electrons are light \Rightarrow fast acceleration $\Rightarrow \beta \cong 1$ already at an energy of a few MeV

Uniform disk-loaded waveguide, travelling wave (up to $50 \mathrm{GeV}, f \sim 3 \mathrm{GHz}$ - S-band)

$$
E(z, t)=E_{0} e^{i(\omega t-k z)} \quad \text { Electric field }
$$

Wave number $\quad k=\frac{2 \pi}{\lambda_{R F}} \quad$ Phase velocity $\quad v_{p h}=\frac{\omega}{k} \quad$ Group velocity $\quad v_{g}=\frac{\mathrm{d} \omega}{\mathrm{d} k}$

Synchronism condition

$$
v_{e l} \approx c=\frac{\omega}{k}=v_{p h}
$$

JUAS

Electron linacs
\& structures

Used for protons, ions

Cyclotron

$$
\begin{aligned}
& \mathrm{B}=\text { constant } \\
& \omega_{\mathrm{RF}}=\text { constant }
\end{aligned}
$$

Synchronism condition

\Rightarrow| $\omega_{s}=\omega_{R F}$ |
| :---: |
| $2 \pi \rho=v_{s} T_{R F}$ |

Ions trajectory

Cyclotron frequency

$$
\omega=\frac{q B}{m_{0} \gamma}
$$

1. $\quad \gamma$ increases with the energy
\Rightarrow no exact synchronism
2. if $v \ll c \Rightarrow \gamma \cong 1$

Cyclotron (H^{-}accelerated, protons extracted)

Same as cyclotron, except a modulation of $\omega_{\text {RF }}$

B	$=$ constant
$\gamma \omega_{\text {RF }}$	$=$ constant

The condition:

$$
\omega_{s}(t)=\omega_{R F}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

Allows to go beyond the non-relativistic energies

Synchrotron

Synchronism condition

h integer, harmonic number

1. ω_{RF} and ω increase with energy
2. To keep particles on the closed orbit, B should increase with time

Synchrotron

- In reality, the orbit in a synchrotron is not a circle, straight sections are added for RF cavities, injection and extraction, etc..
- Usually the beam is pre-accelerated in a linac (or a smaller synchrotron) before injection
- The bending radius ρ does not coincide to the machine radius $R=L / 2 \pi$

LEAR (CERN)

Low Energy Antiproton Ring

Examples of different proton and electron synchrotrons at CERN

EPA (CERN)
© CERN Geneva
Electron Positron Accumulator

Parameters for circular accelerators

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$
R=\frac{\gamma v m_{0}}{e B}
$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$
f=\frac{e B}{2 \pi \gamma m_{0}}
$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

Machine	Energy (γ)	Velocity	Field	Orbit	Frequency
Cyclotron	~ 1	var.	const.	$\sim v$	const.
Synchrocyclotron	var.	var.	$B(r)$	$\sim p$	$B(r) / \gamma(t)$
Proton/Ion synchrotron	var.	var.	$\sim p$	R	$\sim v$
Electron synchrotron	var.	const.	$\sim p$	R	const.

Transit time factor

RF acceleration in a gap g

$$
E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)
$$

Simplified model

$$
\begin{aligned}
& E_{1}(s, r)=\frac{V_{R F}}{g}=\text { const. } \\
& E_{2}(t)=\sin \left(\omega_{R F} t+\phi_{0}\right)
\end{aligned}
$$

At $t=0, s=0$ and $v \neq 0$, parallel to the electric field
Energy gain:

$$
\text { where } T_{a}=\frac{\sin \frac{\omega_{R F} g}{2 v}}{\frac{\omega_{R F} g}{2 v}}
$$

\[

\]

Transit time factor II

In the general case, the transit time factor is given by:

$$
T_{a}=\frac{\int_{-\infty}^{+\infty} E_{1}(s, r) \cos \left(\omega_{R F} \frac{s}{v}\right) \mathrm{d} s}{\int_{-\infty}^{+\infty} E_{1}(s, r) \mathrm{d} s}
$$

It is the ratio of the peak energy gained by a particle with velocity v to the peak energy gained by a particle with infinite velocity.

I. Voltage, phase, frequency

Main RF parameters

In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$
\begin{array}{ll}
E(s, t)=E_{1}(s) \cdot E_{2}(t) & E_{2}(t)=E_{0} \sin \left[\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\phi_{0}\right] \\
\omega_{R F}=2 \pi f_{R F} & \Delta E=e V_{R F} T_{a} \sin \phi_{0}
\end{array}
$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the phase
II. Harmonic number

$$
T_{r e v}=h T_{R F} \quad \Rightarrow \quad f_{R F}=h f_{r e v}
$$

$$
\begin{aligned}
f_{\text {rev }} & =\text { revolution frequency } \\
f_{R F} & =\text { frequency of the RF } \\
h & =\text { harmonic number }
\end{aligned}
$$

harmonic number in different machines:

AA	EPA	PS	SPS
1	8	20	4620

Dispersion

Momentum compaction factor in a transport system

In a particle transport system, a nominal trajectory is defined for the nominal momentum p.
For a particle with a momentum $p+\Delta p$ the trajectory length can be different from the length L of the nominal trajectory.

The momentum compaction factor is defined by the ratio:

$$
\alpha_{p}=\frac{d L / L}{d p / p}
$$

Therefore, for small momentum deviation, to first order it is:

$$
\frac{\Delta L}{L}=\alpha_{p} \frac{\Delta p}{p}
$$

Example: constant magnetic field

To first order, only the bending magnets contribute to a change of the trajectory length ($r=\infty$ in the straight sections)

Longitudinal phase space

The particle trajectory in the phase space $(\Delta p / p, \phi)$ describes its longitudinal motion.

Emittance: phase space area including all the particles

NB: if the emittance contour correspond to a possible orbit in phase space, its shape does not change with time (matched beam)

Bunch compressor

$$
\Delta L=\left[4 \rho \frac{\tan \theta-\theta}{\sin \theta}+2 l \tan ^{2} \theta\right] \frac{\Delta p}{p}
$$

Bunch compression

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations)

Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p.
For a particle with a momentum deviation Δp produces an orbit length variation ΔC with:

$$
\text { For } B=\text { const. } \frac{\Delta C}{C}=\alpha_{p} \frac{\Delta p}{p} \quad C=2 \pi R
$$

The momentum compaction factor is defined by the ratio:

$$
\alpha_{p}=\frac{d C / C}{d p / p}=\frac{d R / R}{d p / p} \quad \text { and } \quad \alpha_{p}=\frac{1}{C} \int_{C} \frac{D_{x}(s)}{\rho(s)} \mathrm{d} s
$$

N.B.: in most circular machines, α_{p} is positive \Rightarrow higher momentum means longer circumference

Momentum compaction as a function of energy

$$
E=\frac{p c}{\beta} \quad \Rightarrow \quad \frac{\mathrm{~d} E}{E}=\beta^{2} \frac{d p}{p}
$$

$$
\alpha_{p}=\beta^{2} \frac{E}{R} \frac{\mathrm{~d} R}{\mathrm{~d} E}
$$

Momentum compaction as a function of magnetic field

Definition of average
magnetic field

$$
\begin{aligned}
& =\frac{1}{2 \pi R} \int_{C} B_{f} \mathrm{~d} s=\frac{1}{2 \pi R}\left(\int_{\text {straights }} B_{f} \mathrm{~d} s+\int_{\text {magnets }} B_{f} \mathrm{~d} s\right) \\
& =\frac{B_{f} \rho}{R} \\
& B_{f} \rho=\frac{p}{e} \quad \nabla \\
& \Rightarrow \frac{\mathrm{~d}\langle B\rangle}{\langle B\rangle}=\frac{\mathrm{d} B_{f}}{B_{f}}+\frac{\mathrm{d} \rho}{\rho}-\frac{\mathrm{d} R}{R} \\
& R=\frac{p}{e} \quad \Rightarrow \quad \frac{\mathrm{~d}\langle B>}{\langle B>}+\frac{\mathrm{d} R}{R}=\frac{\mathrm{d} p}{p} \\
& \alpha_{p}=1-\frac{\mathrm{d}\langle B\rangle}{\langle B\rangle} / \frac{\mathrm{d} p}{p}
\end{aligned}
$$

For $B_{f}=$ const .

Transition energy

Proton (ion) circular machine with α_{p} positive

1. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ longer orbit $(C+\Delta C)$
2. Momentum larger than the nominal $(p+\Delta p) \Rightarrow$ higher velocity $(v+\Delta v)$

What happens to the revolution frequency $f=v / C$?

- At low energy, v increases faster than C with momentum
- At high energy $v \cong c$ and remains almost constant

There is an energy for which the velocity variation is compensated by the trajectory variation \Rightarrow transition energy

Below transition: higher energy \Rightarrow higher revolution frequency Above transition: higher energy \Rightarrow lower revolution frequency

Transition energy - quantitative approach

We define a parameter η (revolution frequency spread per unit of momentum spread):

$$
\begin{aligned}
& \quad \eta=\frac{\mathrm{d} f / f}{\mathrm{~d} p / p}=\frac{\mathrm{d} \omega / \omega}{\mathrm{d} p / p} \\
& f=\frac{v}{C} \quad \Rightarrow \quad \frac{\mathrm{~d} f}{f}=\frac{\mathrm{d} \beta}{\beta}-\frac{\mathrm{d} C}{C}
\end{aligned}
$$

from $p=\frac{m_{0} c \beta}{\sqrt{1-\beta^{2}}} \Rightarrow \frac{\mathrm{~d} \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\mathrm{~d} p}{p} \quad \begin{aligned} & \text { definition of momentum } \\ & \text { compaction factor: }\end{aligned} \quad \frac{\mathrm{d} C}{C}=\alpha_{p} \frac{\mathrm{~d} p}{p}$

$$
\frac{\mathrm{d} f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{p}\right) \frac{\mathrm{d} p}{p}
$$

Transition energy - quantitative approach

$$
\eta=\frac{1}{\gamma^{2}}-\alpha_{p}
$$

The transition energy is the energy that corresponds to $\eta=0$ (α_{p} is fixed, and γ variable)

$$
\gamma_{t r}=\sqrt{\frac{1}{\alpha_{p}}}
$$

The parameter η can also be written as

$$
\eta=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}^{2}}
$$

- At low energy $\quad \eta>0$
- At high energy $\eta<0$

$$
\begin{array}{ll}
\text { N.B.: } & \text { for electrons, } \gamma \gg \gamma_{t r} \Rightarrow \eta<0 \\
& \text { for linacs } \alpha_{p}=0 \Rightarrow \eta>0
\end{array}
$$

LESSON III

Equations related to synchrotrons

Synchronous particle

Synchrotron oscillations

Principle of phase stability

Equations related to synchrotrons

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R}+\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\gamma^{2} \frac{\mathrm{~d} R}{R} \\
& \frac{\mathrm{~d} B}{B}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
& \frac{\mathrm{~d} B}{B}=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}{ }^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

$p[\mathrm{MeV} / \mathrm{c}]$ momentum
$R[\mathrm{~m}] \quad$ orbit radius
$B[\mathrm{~T}] \quad$ magnetic field
$f[\mathrm{~Hz}] \quad$ rev. frequency
$\gamma_{t r} \quad$ transition energy

I - Constant radius

$$
\mathrm{d} R=0
$$

Beam maintained on the same orbit when energy varies

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}
\end{aligned}
$$

If p increases

II - Constant energy

$$
\mathrm{d} p=0
$$

$$
V_{R F}=0 \quad \text { Beam debunches }
$$

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=0=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R}+\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=0=\gamma^{2} \frac{\mathrm{~d} f}{f}+\gamma^{2} \frac{\mathrm{~d} R}{R}
\end{aligned}
$$

If B increases

III - Magnetic flat-top

$$
\mathrm{d} B=0
$$

Beam bunched with constant magnetic field

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B}=0=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
& \frac{\mathrm{~d} B}{B}=0=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

If p increases

$$
R \text { increases }
$$

f increase $\quad \gamma<\gamma_{t r}$
decreases $\gamma>\gamma_{t r}$

IV - Constant frequency
 $$
\mathrm{d} f=0
$$

Beam driven by an external oscillator

$$
\begin{aligned}
\frac{\mathrm{d} p}{p}=\gamma^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B} & =\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p} \\
\frac{\mathrm{~d} B}{B} & =\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}
\end{aligned}
$$

If p increases
R increases
$\begin{array}{ll}\mathrm{B} \text { decreases } & \gamma<\gamma_{t r} \\ \text { increase } & \gamma>\gamma_{t r}\end{array}$

Four conditions - resume

Beam	Parameter	Variations		momentum
Debunched	$\Delta p=0$	$B \Uparrow, R \Downarrow, f \Uparrow$		
Fixed orbit	$\Delta R=0$	$B \Uparrow, p \Uparrow, f \Uparrow$		orbit radius
Magnetic flat-top	$\Delta B=0$	$\begin{array}{r} p \Uparrow, R \Uparrow, f \Uparrow(\eta>0) \\ f \Downarrow(\eta<0) \end{array}$		magnetic field
External oscillator	$\Delta f=0$	$\begin{array}{r} B \Uparrow, p \Downarrow, R \Downarrow(\eta>0) \\ p \Uparrow, R \Uparrow(\eta<0) \end{array}$		frequency

Simple case (no accel.): $B=$ const. $\quad \gamma<\gamma_{t r}$

Synchronous particle

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity
$\Delta E=e \hat{V}_{R F} \sin \phi$

$$
\omega=\frac{e B}{\gamma m_{0}}=\frac{\omega_{R F}}{h}
$$

In order to keep the resonant condition, the particle must keep a constant energy The phase of the synchronous particle must therefore be $\phi_{0}=0$ (circular machines convention) Let's see what happens for a particle with the same energy and a different phase (e.g., ϕ_{1})

Synchrotron oscillations

$\phi_{1} \quad$ - The particle is accelerated

- Below transition, an increase in energy means an increase in revolution frequency
- The particle arrives earlier - tends toward ϕ_{0}

$\phi_{2} \quad$ - The particle is decelerated
- decrease in energy - decrease in revolution frequency
- The particle arrives later - tends toward ϕ_{0}

Case with acceleration B increasing $\quad \gamma<\gamma_{t r}$

Synchronous particle

$$
\Delta E=e \hat{V}_{R F} \sin \phi
$$

The phase of the synchronous particle is now $\phi_{s}>0$ (circular machines convention)
The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R

$$
R=\frac{\gamma v m_{0}}{e B}
$$

The RF frequency is increased as well in order to keep the resonant condition

$$
\omega=\frac{e B}{\gamma m_{0}}=\frac{\omega_{R F}}{h}
$$

Phase stability

The symmetry of the case with $B=$ const. is lost

Phase stability

LESSON IV

RF acceleration for synchronous particle

RF acceleration for non-synchronous particle

Small amplitude oscillations

Large amplitude oscillations - the RF bucket

Let's assume a synchronous particle with a given $\phi_{s}>0$
We want to calculate its rate of acceleration, and the related rate of increase of B, f.

$$
p=e B \rho
$$

Want to keep $\rho=$ cons \dagger

$$
\Rightarrow \quad \frac{\mathrm{d} p}{\mathrm{~d} t}=e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t}=e \rho \dot{B}
$$

Over one turn: $\quad(\Delta p)_{\text {turn }}=e \rho \dot{B} T_{\text {rev }}=e \rho \dot{B} \frac{2 \pi R}{\beta c}$
We know that (relativistic equations) : $\Delta p=\frac{\Delta E}{\beta c}$

$$
(\Delta E)_{t u r n}=e \rho \dot{B} 2 \pi R
$$

RF acceleration for synchronous particle - phase

$(\Delta E)_{\text {turn }}=e \rho \dot{B} 2 \pi R \quad \begin{aligned} & \text { On the other hand, } \\ & \text { for the synchronous particle: } \quad\end{aligned} \quad(\Delta E)_{\text {turn }}=e \hat{V}_{R F} \sin \phi_{s}$

$$
e \rho \dot{B} 2 \pi R=e \hat{V}_{R F} \sin \phi_{s}
$$

Therefore: 1. Knowing ϕ_{s}, one can calculate the increase rate of the magnetic field needed for a given RF voltage:

$$
\dot{B}=\frac{\hat{V}_{R F}}{2 \pi \rho R} \sin \phi_{s}
$$

2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:

$$
\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \quad \Rightarrow \quad \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)
$$

RF acceleration for synchronous particle - frequency

$$
\begin{aligned}
& \omega_{R F}=h \omega_{s}=h \frac{e}{m}\quad\left(v=\frac{e}{m} B \rho\right) \\
& \omega_{R F}=h \frac{e}{m} \frac{\rho}{R} B
\end{aligned}
$$

From relativistic equations:

$$
\omega_{R F}=\frac{h c}{R} \sqrt{\frac{B^{2}}{B^{2}+\left(E_{0} / e c \rho\right)^{2}}}
$$

Let

$$
B_{0} \equiv \frac{E_{0}}{e c \rho} \quad f_{R F}=\frac{h c}{2 \pi R}\left(\frac{B}{B_{0}}\right) \frac{1}{\sqrt{1+\left(B / B_{0}\right)^{2}}}
$$

Example: PS

At the CERN Proton Synchrotron machine, one has:

$$
\begin{gathered}
R=100 \mathrm{~m} \\
\dot{B}=2.4 \mathrm{~T} / \mathrm{s}
\end{gathered}
$$

100 dipoles with $l_{\text {eff }}=4.398 \mathrm{~m}$. The harmonic number is 20

Calculate:

1. The energy gain per turn
2. The minimum $R F$ voltage needed
3. The RF frequency when $B=1.23 \mathrm{~T}$ (at extraction)

RF acceleration for non synchronous particle

Parameter definition (subscript " s " stands for synchronous particle):

$$
\begin{array}{ll}
f=f_{s}+\Delta f & \text { revolution frequency } \\
\phi=\phi_{s}+\Delta \phi & \text { RF phase } \\
p=p_{s}+\Delta p & \text { Momentum } \\
E=E_{s}+\Delta E & \text { Energy } \\
\theta=\theta_{s}+\Delta \theta & \text { Azimuth angle }
\end{array}
$$

$$
\begin{aligned}
\mathrm{d} s & =R \mathrm{~d} \theta \\
\theta(t) & =\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau
\end{aligned}
$$

$$
\Delta \theta>0 \Rightarrow \Delta \phi<0
$$

Since $f_{R F}=h f_{\text {rev }}$

$$
\Rightarrow \quad \Delta \phi=-h \Delta \theta \quad \text { Over one turn } \begin{aligned}
& \theta \text { varies by } 2 \pi \\
& \phi \text { varies by } 2 \pi h
\end{aligned}
$$

1. Angular frequency

$$
\begin{aligned}
\theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau \quad \Delta \omega & =\frac{\mathrm{d}}{\mathrm{~d} t}(\Delta \theta) \\
& =-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}(\Delta \phi) \\
& =-\frac{1}{h} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\phi-\phi_{s}\right) \quad \frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \text { by definition } \\
& =-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
\end{aligned}
$$

$$
\Delta \omega=-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

Parameters versus $\dot{\phi}$

2. Momentum

$$
\eta=\frac{\mathrm{d} \omega / \omega}{\mathrm{d} p / p}=\frac{\Delta \omega / \omega}{\Delta p / p}
$$

$$
\Delta p=\frac{p_{s}}{\omega_{s}} \frac{\Delta \omega}{\eta}=\frac{p_{s}}{\omega_{s} \eta}\left(-\frac{1}{h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)
$$

$$
\Delta p=\frac{-p_{s}}{\omega_{s} \eta h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

3. Energy

$$
\frac{\mathrm{d} E}{\mathrm{~d} p}=v
$$

$$
\frac{\Delta E}{\Delta p}=v=\omega R
$$

$$
\Delta E=-\frac{R p_{s}}{\eta h} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}
$$

Derivation of equations of motion

Energy gain after the RF cavity

$$
\begin{aligned}
& (\Delta E)_{\text {turn }}=e \hat{V}_{R F} \sin \phi \\
& (\Delta p)_{\text {turn }}=\frac{e}{\omega R} \hat{V}_{R F} \sin \phi
\end{aligned}
$$

Average increase per time unit

$$
\frac{(\Delta p)_{\text {turn }}}{T_{\text {rev }}}=\frac{e}{2 \pi R} \hat{V}_{R F} \sin \phi \quad 2 \pi R \dot{p}=e \hat{V}_{R F} \sin \phi \quad \text { valid for any particle }!
$$

$$
2 \pi\left(R \dot{p}-R_{s} \dot{p}_{s}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

Derivation of equations of motion

After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{s}}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

An approximated version of the above is

$$
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

Which, together with the previously found equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=-\frac{\omega_{s} \eta h}{p_{s}} \Delta p
$$

Describes the motion of the non-synchronous particle in the longitudinal phase space ($\Delta p, \phi)$

Equations of motion I

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=A\left(\sin \phi-\sin \phi_{s}\right) \\
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=B \Delta p
\end{array} \quad \text { with } A=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}, \quad \begin{array}{rl}
B & =-\frac{\eta h}{p_{s}} \frac{\beta_{s} c}{R_{s}}
\end{array}\right.
$$

Equations of motion II

1. First approximation - combining the two equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{B} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)-A\left(\sin \phi-\sin \phi_{s}\right)=0
$$

We assume that A and B change very slowly compared to the variable $\Delta \phi=\phi-\phi_{s}$

$$
\Rightarrow \quad \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} t^{2}}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

with $\quad \frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}=-A B \quad$ We can also define: $\quad \Omega_{0}{ }^{2}=\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}{ }^{2} E_{s}}$
2. Second approximation

$$
\begin{aligned}
\sin \phi & =\sin \left(\phi_{s}+\Delta \phi\right) \\
& =\sin \phi_{s} \cos \Delta \phi+\cos \phi_{s} \sin \Delta \phi
\end{aligned}
$$

$\Delta \phi$ small $\quad \Rightarrow \quad \sin \phi \cong \sin \phi_{s}+\cos \phi_{s} \Delta \phi$

$$
\frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\phi_{s}+\Delta \phi\right)=\frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}
$$

by definition

$$
\frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}+\Omega_{s}^{2} \Delta \phi=0
$$

Harmonic oscillator!

Stability condition for ϕ_{s}

Stability is obtained when the angular frequency of the oscillator, $\Omega_{s}{ }^{2}$ is real positive:

$$
\Omega_{s}^{2}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}^{2} E_{s}} \cos \phi_{s} \Rightarrow \Omega_{s}^{2}>0 \Leftrightarrow \eta \cos \phi_{s}>0
$$

Small amplitude oscillations - orbits

For $\eta \cos \phi_{s}>0$ the motion around the synchronous particle is a stable oscillation:

$$
\left\{\begin{array}{l}
\Delta \phi=\Delta \phi_{\max } \sin \left(\Omega_{s} t+\phi_{0}\right) \\
\Delta p=\Delta p_{\max } \cos \left(\Omega_{s} t+\phi_{0}\right)
\end{array}\right.
$$

$$
\text { with } \quad \Delta p_{\max }=\frac{\Omega_{s}}{B} \Delta \phi_{\max }
$$

Lepton machines

e+, e-

$$
\beta \cong 1, \gamma \text { large }, \quad \eta \cong-\alpha_{p}
$$

$$
\begin{aligned}
& \text {. } \\
& \omega_{s} \cong \frac{c}{R_{s}} \quad, \quad p_{s} \cong \frac{E_{s}}{c} \Rightarrow \Omega_{s}=\frac{c}{R_{s}}\left\{-\frac{e \hat{V}_{R F} \alpha_{p} h}{2 \pi E_{s}} \cos \phi_{s}\right\}^{1 / 2}
\end{aligned}
$$

Number of synchrotron oscillations per turn:

$$
Q_{s}=\frac{\Omega_{s}}{\omega_{s}}=\left\{-\frac{e \hat{V}_{R F} \alpha_{p} h}{2 \pi E_{s}} \cos \phi_{s}\right\}^{1 / 2} \quad \text { "synchrotron tune" }
$$

N.B: in these machines, the RF frequency does not change

Large amplitude oscillations

$\ddot{\phi}+\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0$

> Multiplying by $\dot{\phi}$ and integrating

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{\mathrm{s}}\right)=c t e
$$

Constant of motion

$$
\text { here } \begin{aligned}
\dot{\phi} & =0 \\
\qquad \phi & =\pi-\phi_{s}
\end{aligned}
$$

Equation of the separatrix

$$
\frac{\dot{\phi}^{2}}{2}-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left(\cos \phi+\phi \sin \phi_{s}\right)=-\frac{\Omega_{s}^{2}}{\cos \phi_{s}}\left[\cos \left(\pi-\phi_{s}\right)+\left(\pi-\phi_{s}\right) \sin \phi_{s}\right]
$$

Energy diagram

Phase space trajectories

$\gamma>\gamma_{t r}$

Phase space trajectories for different synchronous phases

LESSON V

Measurement of the longitudinal bunch profile and Tomography

RF manipulations

The ESME simulation code
=> WALL CURRENT MONITOR = Device used to measure the

Tomography

TOMOSCOPE (developed by S. Hancock, CERN/BE/RF)

The aim of TOMOGRAPHY is to estimate an unknown distribution (here the 2D longitudinal distribution) using only the information in the

RF manipulations

RF manipulations

The ESME simulation code

Want to calculate the evolution of a distribution of particles in energy and azimuth as it is acted upon by the Radio Frequency (RF) system of a synchrotron or storage ring? = > Use ESME code

Several RF systems and many other effects can be included
ESME $\Rightarrow>$ It is not an acronym. The name is that of the heroine of J. D. Salinger's short story "To Esme with Love and Squalor"

Code initially developed during the years 1981-82 for the design of the Tevatron I Antiproton Source and first documented for general use in 1984

Homepage $=$ http://www-ap.fnal.gov/ESME/

The ESME simulation code

Download and execution of the ESME code in local:

1) We need a recent version of gcc / gfortran (to compile the fortran program) and the pgplot library
2) My local executable (many thanks Laurent Deniau, due to my old MAC!) is called esme in the folder /Users/eliasmetral/Documents/CERN/Private_Since_07-12-08/Courses/JUAS/2014/
ESME_Tutorial (Reminder to make this file an executable: chmod +x esme)
3) To have the labels on the pictures, we need also to install 2 files: grfont.dat and rgb.txt
4) A first example can be taken from the source code downloaded \Rightarrow In the folder EXAMPLES, the first input file is called docdat1. dat \Rightarrow Put it in the folder where the executable is

The ESME simulation code

5) To run the program with this input file, type: .lesme -i -f docdat1. dat
=> The program starts to run and ask for Device Specification (? for list) :
=> Typing? + enter, one can see the different options for the plots

Device Specification (? for list) :?	
Interactive devices:	
/XWINDOW	(X window window@node:display.screen/xw)
/XSERVE	(A /XWINDOW window that persists for re-use)
Non-interactive file formats:	
/GIF	(Graphics Interchange Format file, landscape orientation)
NGIF	(Graphics Interchange Format file, portrait orientation)
/LATEX	(LaTeX picture environment)
/NULL	(Null device, no output)
/PNG	(Portable Network Graphics file)
/TPNG	(Portable Network Graphics file - transparent background)
/PS	(PostScript file, landscape orientation)
NPS	(PostScript file, portrait orientation)
/CPS	(Colour PostScript file, landscape orientation)
NCPS	(Colour PostScript file, portrait orientation)
Device Specification (? for list) :	

- f filename = use filename for input instead of standard

PGPLOT v5.2.2 Copyright 1997 California Institute of Technology

- i = interactive output (pauses between plots)
$\underbrace{\text { input }}$

6) Typing $g v$
pgplot.ps \& gives the following result

The ESME simulation code

