JUAS

LONGITUDINAL BEAM DYNAMICS

Elias Métral (CERN BE Department)

The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course in 2010 (I already gave this course in 2011-12-13) and who inherited them from Roberto Corsini (CERN-BE), who gave this course in the previous years, based on the ones
written by Louis Rinolfi (CERN-BE) who held the course at JUAS from 1994 to 2002 (see hotp:/lladsar CERN/PS 2000-008 (LP)

Material from Joel LeDuff's Course at the CERN Accelerator School held at Jyvaskyla, Finland the 7-18 September 1992 (CERN $94-01$) has been used as well:

I attended the course given by Louis Rinolfi in 1996 and was his assistant in 2000 and 2001 (and the assistant of Michel Martini for his course on transverse beam dynamics)
his course and related exercises $/$ exams (as well as other courses) can be found in my

New assistant this year: Elena Benedetto (CERN BE Department)
JUAS - Jon 2014-E. Métral Page 1 Page 1

Fields \& Forces

Relativity
Acceleration (electrostatic, RF
Synchrotons
ongitudinal phase space
Momentum Compaction
Transition energy
Synchrotron oscillations

+ RF manipulations and the ESME simulation code
=> Added to the past slides

Examination: WE 05/02/2014
(09:00 to 10:30)

JUAS - Jon 2014 - E.Métral

LESSON I

Fields \& forces

Acceleration by time-varying fields

Relativistic equations

JUAS

Maxwell's equations

The differential forms, in vacuum, are recalled below:

1. Gauss's law $\nabla \cdot \vec{E}=\frac{1}{\varepsilon_{0}} \rho(\vec{r}, t)$
2. No free magnetic poles
$\nabla \cdot \vec{B}=0$

$$
\begin{aligned}
& \text { 3. Ampere's law } \\
& \text { (modified by Gauss) } \\
& \text { A }
\end{aligned} \quad \nabla \times \vec{B}=\mu_{\circ} \vec{j}(\vec{r}, t)+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
$$

4. Faraday's law $\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

JUAS - Jan 2014-E.Métral
SUn:-Jan 2014-E.Mêtral Page 7 Page 7

JUAS
The fields must satisfy Maxwell's equations
The integral forms, in vacuum, are recalled below.

1. Gauss's law (electrostatic)
2. No free magnetic poles (magnetostatic)
$\int_{S} \vec{E} \cdot \mathrm{~d} \vec{s}=\frac{1}{\varepsilon_{0}} \int_{V} \rho \mathrm{~d} \vec{s}=0$

$$
\int_{L} \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{\circ} \int_{S} \vec{j} \cdot \mathrm{~d} \vec{s}+\frac{1}{c^{2}} \int_{S} \frac{\partial \vec{E}}{\partial t} \cdot \mathrm{~d} \vec{s}
$$

$$
\text { 4. Faraday's law } \begin{gathered}
\text { (magnetic varying) }
\end{gathered} \int_{L} \vec{E} \cdot \mathrm{~d} \vec{l}=-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{s}
$$

JUAS - Jon 2014- E.Métral Page 6

JUAS

Constant electric field

$$
\frac{\mathrm{d} \vec{p}}{\mathrm{dt}}=-e \vec{E}
$$

1. Direction of the force always parallel to the field
2. Trajectory can be modified, velocity also \Rightarrow momentum and energy can be modified
 Page 8

JUAS

Comparison of magnetic and electric forces
$|\vec{B}|=1 \mathrm{~T}$
$|\vec{E}|=10 \mathrm{MV} / \mathrm{m}$

$$
\left(\frac{F_{\text {MGGN }}}{F_{\text {EILCC }}}=\frac{e v B}{e E}=\beta c \frac{B}{E} \cong 3 \cdot 10^{8} \frac{1}{10^{7}} \beta=30 \beta\right.
$$

JUAS - Jan 2014-E.Métral

JUAS

Acceleration by time-varying magnetic field

A variable magnetic field produces an electric field (Faraday's Law):

$$
\int_{L} \vec{E} \cdot \mathrm{~d} \vec{l}=-\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot \mathrm{~d} \vec{s}=-\frac{\mathrm{d} \Phi}{\mathrm{~d} t}
$$

It is the Betatron concept

The varying magnetic field is used to guide particles on a circular trajectory as well as for acceleration

JUAS - Jon 2014 - E.Métral

In the cavity gap, the electric field is supposed to be
$E(s, r, t)=E_{1}(s, r) \cdot E_{2}(t)$
In general, $E_{2}(t)$ is a sinusoidal time variation with angular frequency ω_{RF}

$$
E_{2}(t)=E_{\mathrm{o}} \sin \Phi(t) \quad \text { where } \quad \Phi(t)=\int_{t_{0}}^{l} \omega_{R F} \mathrm{~d} t+\Phi_{0}
$$

JUAL - Jan 2014-E.Mêtral Page 15

JUAS

Convention

1. For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage with positive slope
2. For linear accelerators, the origin of time is taken at the positive crest of the RF voltage

Time $t=0$ chosen such that:

$E_{2}(t)=E_{\mathrm{o}} \sin \left(\omega_{R F} t\right)$

$E_{2}(t)=E_{\circ} \cos \left(\omega_{R F} t\right)$

JUAS - Jon 2014 - E.Métral
Page 16

The basic principles, for the common circular accelerators, are based on the two relations:

1. The Lorentz equation: the orbit radius can be espressed as:

$$
R=\frac{\gamma v m_{0}}{e B}
$$

2. The synchronicity condition: The revolution frequency can be expressed as:

$$
f=\frac{e B}{2 \pi \gamma m_{0}}
$$

According to the parameter we want to keep constant or let vary, one has different acceleration principles. They are summarized in the table below:

Machine	Energy (γ)	Velocity	Field	Orbit	Frequency
Cyclotron	~ 1	var.	const.	$\sim v$	const.
Synchrocyclotron	var.	var.	$B(r)$	$\sim p$	$B(r) / \gamma(t)$
	Proton/Ion synchrotron	var.	var.	$\sim p$	R
	Electron synchrotron	var.	const.	$\sim p$	R

JUAS

Transit time factor II

In the general case, the transit time factor is given by:

$$
T_{a}=\frac{\int_{-\infty}^{+\infty} E_{1}(s, r) \cos \left(\omega_{R F} \frac{s}{v}\right) \mathrm{d} s}{\int_{-\infty}^{+\infty} E_{1}(s, r) \mathrm{d} s}
$$

It is the ratio of the peak energy gained by a particle with velocity v to the peak energy gained by a particle with infinite velocity.

JUAS

I. Voltage, phase, frequency

Main RF parameters
In order to accelerate particles, longitudinal fields must be generated in the direction of the desired acceleration

$$
\begin{array}{ll}
E(s, t)=E_{1}(s) \cdot E_{2}(t) & E_{2}(t)=E_{0} \sin \left[\int_{t_{0}}^{t} \omega_{R F} \mathrm{~d} t+\phi_{0}\right] \\
\omega_{R F}=2 \pi f_{R F} & \Delta E=e V_{R F} T_{a} \sin \phi_{0}
\end{array}
$$

Such electric fields are generated in RF cavities characterized by the voltage amplitude, the frequency and the
phase phase
II. Harmonic number

$$
T_{r e v}=h T_{R F} \quad \Rightarrow \quad f_{R F}=h f_{r e v}
$$

$\begin{aligned} f_{\text {rev }} & =\text { revolution frequency } \\ f_{\text {RF }} & =\text { frequency of the RF }\end{aligned}$
$=$ frequency of the R
harmonic number in different machines:
AA EPA PS SPS
$=$ harmonic number
18204620

JUAS - Jon 2014 - E.Métral

Momentum compaction factor in a transport system In a particle transport system, a nominal trajectory is defined for the nominal momentum p . For a particle with a momentum $\mathrm{p}+\Delta \mathrm{p}$ the trajectory length can be different from the length L of the nominal trajectory

The momentum compaction factor is defined by the ratio

$$
\alpha_{p}=\frac{d L / L}{d p / p}
$$

Therefore, for small momentum deviation, to first order it is:

$$
\frac{\Delta L}{L}=\alpha_{p} \frac{\Delta p}{p}
$$

JUAS - Jan 2014 - E. Métral
Page 39

Example: constant magnetic field

To first order, only the bending magnets contribute to a change of the trajectory length
$(r=\infty$ in the straight sections)
JUAS - Jan 2014 - E.Mêtral Page

$$
\Delta L=\left[4 \rho \frac{\tan \theta-\theta}{\sin \theta}+2 l \tan ^{2} \theta\right] \frac{\Delta p}{p}
$$

JUAS - Jan 2014-E. Métral
Page 42

JUAS

Momentum compaction in a ring

In a circular accelerator, a nominal closed orbit is defined for the nominal momentum p.
For a particle with a momentum deviation $\Delta \mathrm{p}$ produces an orbit length variation ΔC with

For $\mathrm{B}=$ const.

$$
\frac{\Delta C}{C}=\alpha_{p} \frac{\Delta p}{p}
$$

$$
C=2 \pi R
$$

$$
\underbrace{\substack{\text { (average) radius of } \\ \text { the closed orbit }}}_{\text {circumference }}
$$

The momentum compaction factor is defined by the ratio:

$$
\alpha_{p}=\frac{d C / C}{d p / p}=\frac{d R / R}{d p / p} \quad \text { and } \quad \alpha_{p}=\frac{1}{C} \int_{C} \frac{D_{x}(s)}{\rho(s)} \mathrm{d} s
$$

N.B.: in most circular machines, α_{p} is positive \Rightarrow higher momentum means longer circumference

JUAS
Momentum compaction as a function of energy

$$
\begin{gathered}
E=\frac{p c}{\beta} \Rightarrow \frac{\mathrm{~d} E}{E}=\beta^{2} \frac{d p}{p} \\
\alpha_{p}=\beta^{2} \frac{E}{R} \frac{\mathrm{~d} R}{\mathrm{~d} E}
\end{gathered}
$$

Momentum compaction as a function of magnetic field

Defintion of average
magnetic field

$$
\begin{aligned}
&=\frac{1}{2 \pi R} \int_{C} B_{f} \mathrm{~d} s=\frac{1}{2 \pi R}\left(\int_{\text {straights }} B_{f} \mathrm{~d} s+\int_{\text {magnets }} B_{f} \mathrm{~d} s\right) \\
&=\frac{B_{f} \rho}{R} \\
& B_{f} \rho=\frac{p}{e} \quad \Longrightarrow \frac{\mathrm{~d}}{}=\frac{\mathrm{d} B_{f}}{B_{f}}+\frac{\mathrm{d} \rho}{\rho}-\frac{\mathrm{d} R}{R} \\
&R=\frac{p}{e} \quad \Rightarrow \frac{\mathrm{~d}}{}+\frac{\mathrm{d} R}{R}=\frac{\mathrm{d} p}{p} \\
& \alpha_{p}=1-\frac{\mathrm{d}}{} / \frac{\mathrm{d} p}{p} \\
& \text { const. }
\end{aligned}
$$

For $\mathrm{B}_{\mathrm{f}}=$ const.

JUAS - Jan 2014-E. Métral

JUAS

Transition energy - quantitative approach We define a parameter η (revolution frequency spread per unit of momentum spread):

$$
\begin{gathered}
\begin{array}{c}
\eta=\frac{\mathrm{d} f / f}{\mathrm{~d} p / p}=\frac{\mathrm{d} \omega / \omega}{\mathrm{d} p / p} \\
f=\frac{v}{C} \\
\text { from } p=\frac{m_{0} c \beta}{\sqrt{1-\beta^{2}}} \Rightarrow \frac{\mathrm{~d} \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\mathrm{~d} p}{p} \quad \begin{array}{l}
\text { definition of momentum } \\
\text { compaction factor: }
\end{array} \quad \frac{\mathrm{d} C}{C}=\alpha_{p} \frac{\mathrm{~d} p}{p} \\
\frac{\mathrm{~d} f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{p}\right) \frac{\mathrm{d} p}{p} \\
\text { JUAS - Jon 2014- E. Mérral }
\end{array} \\
\hline
\end{gathered}
$$

JUAS
Transition energy - quantitative approach

$$
\begin{gathered}
\eta=\frac{1}{\gamma^{2}}-\alpha_{p} \quad \begin{array}{c}
\text { The transition energy is the energy that corresponds to } \eta=0 \\
\text { (} \alpha_{\mathrm{p}} \text { is fixed, and } \gamma \text { variable) }
\end{array} \\
\gamma_{t r}=\sqrt{\frac{1}{\alpha_{p}}}
\end{gathered}
$$

The parameter η can also be written as

$$
\eta=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}{ }^{2}} \quad \begin{array}{ll}
\text {. At low energy } & \eta>0 \\
\text { At high energy } & \eta<0
\end{array}
$$

N.B.: $\quad \begin{aligned} & \text { for electrons, } \gamma \gg \gamma_{\text {tr }} \Rightarrow \eta<0 \\ & \text { for linacs } \alpha=0\end{aligned}$
for linacs $\alpha_{p}=0 \Rightarrow \eta>0$
JUAS - Jan 2014 - E. Métral

JUAS

LESSON III

Equations related to synchrotrons

Synchronous particle
Synchrotron oscillations

Principle of phase stability
\qquad
Page 50

I - Constant radius $\quad \mathrm{d} R=0$

Beam maintained on the same orbit when energy varies

$$
\begin{aligned}
& \frac{\mathrm{d} p}{p}=\frac{\mathrm{d} B}{B} \\
& \frac{\mathrm{~d} p}{p}=\gamma^{2} \frac{\mathrm{~d} f}{f}
\end{aligned}
$$

If p increases
$\Rightarrow B$ increases fincreases

JUAS

$$
\text { III - Magnetic flat-top } \mathrm{d} B=0
$$

Beam bunched with constant magnetic field

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} p}{p}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} R}{R} \quad \frac{\mathrm{~d} B}{B} & =0
\end{array}=\gamma_{t r}{ }^{2} \frac{\mathrm{~d} f}{f}+\left[1-\left(\frac{\gamma_{t r}}{\gamma}\right)^{2}\right] \frac{\mathrm{d} p}{p}\right] \text { d } \frac{\mathrm{d} B}{B}=0=\gamma^{2} \frac{\mathrm{~d} f}{f}+\left(\gamma^{2}-\gamma_{t r}^{2}\right) \frac{\mathrm{d} R}{R}
$$

If p increases
$\rightarrow \quad R$ increase
$\begin{array}{ll}\text { increase } & \gamma<\gamma_{t r} \\ \text { decreases } & \gamma>\gamma_{t r}\end{array}$
JUAS - Jan 2014-E.Métral Page

JUAS
Four conditions - resume

JUAS - Jon 2014 - E.Métral

- The particle is accelerated

 - Below transition, an increase in energy means an increase in revolution frequency The particle arrives earlier - tends toward ϕ_{0}
$\phi_{2} \quad$ - The particle is decelerated
decrease in energy - decrease in revolution frequency
The particle arrives later - tends toward ϕ_{0}

JUAS - Jon 2014-E. Mérral
Page 58

JUAS

Synchronous particle $\Delta E=e \hat{V}_{R F} \sin \phi$

The phase of the synchronous particle is now $\phi_{s}>0$ (circular machines convention)
The synchronous particle accelerates, and the magnetic field is increased accordingly to keep the constant radius R

$$
R=\frac{\gamma v m_{0}}{e B}
$$

The RF frequency is increased as well in order to keep the resonant condition

$$
\omega=\frac{e B}{\gamma m_{0}}=\frac{\omega_{R F}}{h}
$$

JUAS - Jan 2014 - E. Métral
Page 60

JUAS	
	LESSON IV
	RF acceleration for synchronous particle
	RF acceleration for non-synchronous particle
	Small amplitude oscillations
	Large amplitude oscillations - the RF bucket
Juas - Jan 20	


```
JUAS
            RF acceleration for synchronous particle - energy gain
    Let's assume a synchronous particle with a given \(\phi_{s}>0\)
    We want to calculate its rate of acceleration, and the related rate of increase of \(B, f\)
\[
\begin{aligned}
p & =e B \rho \\
\Rightarrow \quad \frac{\mathrm{~d} p}{\mathrm{~d} t} & =e \rho \frac{\mathrm{~d} B}{\mathrm{~d} t}=e \rho \dot{B}
\end{aligned}
\]
Over one turn:
\[
(\Delta p)_{u r n}=e \rho \dot{B} T_{r e v}=e \rho \dot{B} \frac{2 \pi R}{\beta c}
\]
\[
\text { We know that (relativistic equations): } \Delta p=\frac{\Delta E}{\beta c}
\]
\[
\Rightarrow(\Delta E)_{\text {turn }}=e \rho \dot{B} 2 \pi R
\]
```

RF acceleration for synchronous particle - phase
$(\Delta E)_{u r n}=e \rho \dot{B} \quad 2 \pi R$
On the other hand,
for the synchronous particle:
$(\Delta E)_{\text {turn }}=e \hat{V}_{R F} \sin \phi_{s}$

$$
e \rho \dot{B} 2 \pi R=e \hat{V}_{R F} \sin \phi_{s}
$$

Therefore: 1. Knowing ϕ_{s}, one can calculate the increase rate of the magnetic field needed for a given RF voltage:
$\Rightarrow \quad \dot{B}=\frac{\hat{V}_{R F}}{2 \pi \rho R} \sin \phi_{s}$
2. Knowing the magnetic field variation and the RF voltage, one can calculate the value of the synchronous phase:
$\sin \phi_{s}=2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}} \quad \Rightarrow \quad \phi_{s}=\arcsin \left(2 \pi \rho R \frac{\dot{B}}{\hat{V}_{R F}}\right)$
JUAS - Jan 2014-E. Métral

JUAS

At the CERN Proton Synchrotron machine, one has:
$R=100 \mathrm{~m}$
$\dot{B}=2.4 \mathrm{~T} / \mathrm{s}$
100 dipoles with $\mathrm{I}_{\text {eff }}=4.398 \mathrm{~m}$. The harmonic number is 20
Calculate:
The energy gain per turn
2. The minimum $R F$ voltage needed
3. The $R F$ frequency when $B=1.23$ (at extraction)

RF acceleration for synchronous particle - frequency

$$
\begin{aligned}
& \omega_{R F}=h \omega_{s}=h \frac{e}{m}\quad\left(v=\frac{e}{m} B \rho\right) \\
& \omega_{R F}=h \frac{e}{m} \frac{\rho}{R} B
\end{aligned}
$$

From relativistic equations:

$$
\omega_{R F}=\frac{h c}{R} \sqrt{\frac{B^{2}}{B^{2}+\left(E_{0} / e c \rho\right)^{2}}}
$$

Let

$$
B_{0} \equiv \frac{E_{0}}{e c \rho} \quad \Rightarrow \quad f_{R F}=\frac{h c}{2 \pi R}\left(\frac{B}{B_{0}}\right) \frac{1}{\sqrt{1+\left(B / B_{0}\right)^{2}}}
$$

JUAS - Jan 2014-E. Métral Page 66

JUAS

RF acceleration for non synchronous particle
Parameter definition (subscript "s" stands for synchronous particle):

$f=f_{s}+\Delta f$	revolution frequency
$\phi=\phi_{s}+\Delta \phi$	RF phase
$p=p_{s}+\Delta p$	Momentum
$E=E_{s}+\Delta E$	Energy
$\theta=\theta_{s}+\Delta \theta$	Azimuth angle
$\mathrm{d} s=R \mathrm{~d} \theta$	
$\theta(t)=\int_{t_{0}}^{t} \omega(\tau) \mathrm{d} \tau$	

JUAS - Jon 2014 - E. Métral
Page 68

JUAS

Derivation of equations of motion
After some development (see J. Le Duff, in Proceedings CAS 1992, CERN 94-01)

$$
2 \pi \frac{d}{d t}\left(\frac{\Delta E}{\omega_{s}}\right)=e \hat{V}_{R F}\left(\sin \phi-\sin \phi_{s}\right)
$$

An approximated version of the above is

$$
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}\left(\sin \phi-\sin \phi_{s}\right)
$$

Which, together with the previously found equation

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=-\frac{\omega_{s} \eta h}{p_{s}} \Delta p
$$

Describes the motion of the non-synchronous particle in the longitudinal phase space ($\Delta \mathrm{p}, \phi$)
JUAS - Jon 2014-E.Métrol

JUAS

Equations of motion II

1. First approximation - combining the two equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{B} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}\right)-A\left(\sin \phi-\sin \phi_{s}\right)=0
$$

We assume that A and B change very slowly compared to the variable $\Delta \phi=\phi-\phi_{S}$

$$
\Rightarrow \quad \frac{\mathrm{d}^{2} \phi}{\mathrm{~d} t^{2}}+\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}\left(\sin \phi-\sin \phi_{s}\right)=0
$$

$$
\text { with } \quad \frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}=-A B \quad \text { We can also define: } \quad \Omega_{0}{ }^{2}=\frac{\Omega_{s}{ }^{2}}{\cos \phi_{s}}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}{ }^{2} E_{s}}
$$

Page 75

JUAS - Jan 2014 - E. Mérral

Equations of motion I

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}(\Delta p)}{\mathrm{d} t}=A\left(\sin \phi-\sin \phi_{s}\right) \\
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=B \Delta p
\end{array}\right.
$$

$$
\text { with } \quad A=\frac{e \hat{V}_{R F}}{2 \pi R_{s}}
$$

$$
B=-\frac{\eta h}{p_{s}} \frac{\beta_{s} c}{R_{s}}
$$

JUAS - Jon 2014 - E. Métral
Page 74

JUAS

2. Second approximation

$$
\begin{aligned}
\sin \phi & =\sin \left(\phi_{s}+\Delta \phi\right) \\
& =\sin \phi_{s} \cos \Delta \phi+\cos \phi_{s} \sin \Delta \phi
\end{aligned}
$$

$\Delta \phi$ small $\Rightarrow \quad \sin \phi \cong \sin \phi_{s}+\cos \phi_{s} \Delta \phi$
$\frac{\mathrm{d} \phi_{s}}{\mathrm{~d} t}=0 \quad \Rightarrow \quad \frac{\mathrm{~d}^{2} \phi}{\mathrm{~d} t^{2}}=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(\phi_{s}+\Delta \phi\right)=\frac{\mathrm{d}^{2} \Delta \phi}{\mathrm{~d} t^{2}}$
by definition
Harmonic oscillator!

JUAS

Stability condition for ϕ_{s} Stability is obtained when the angular frequency of the oscillator, $\Omega_{s}{ }^{2}$ is real positive:

$$
\Omega_{s}{ }^{2}=\frac{e \hat{V}_{R F} \eta h c^{2}}{2 \pi R_{s}{ }^{2} E_{s}} \cos \phi_{s} \Rightarrow \Omega_{s}{ }^{2}>0 \Leftrightarrow \eta \cos \phi_{s}>0
$$

JUAS - Jon 2014 - E. Métral

$$
\longleftarrow \text { acceleration }{ }^{*} \text { deceleration }
$$

JUAS

Lepton machines $\quad e^{+}, e_{-}$

$$
\begin{aligned}
\beta \cong 1 & , \gamma \text { large }, \eta \cong-\alpha_{p} \\
& \omega_{s} \cong \frac{c}{R_{s}}, p_{s} \cong \frac{E_{s}}{c} \Rightarrow \Omega_{s}=\frac{c}{R_{s}}\left\{-\frac{e \hat{V}_{R F} \alpha_{p} h}{2 \pi E_{s}} \cos \phi_{s}\right\}^{1 / 2}
\end{aligned}
$$

Number of synchrotron oscillations per turn:

$$
Q_{s}=\frac{\Omega_{s}}{\omega_{s}}=\left\{-\frac{e \hat{V}_{R F} \alpha_{p} h}{2 \pi E_{s}} \cos \phi_{s}\right\}^{1 / 2} \quad \text { "synchrotron tune" }
$$

N.B: in these machines, the RF frequency does not change

JUAS - Jon 2014-E.Métral Page 79

Small amplitude oscillations - orbits

For $\eta \cos \phi_{s}>0$ the motion around the synchronous particle is a stable oscillation:

$$
\left\{\begin{array}{l}
\Delta \phi=\Delta \phi_{\max } \sin \left(\Omega_{s} t+\phi_{0}\right) \\
\Delta p=\Delta p_{\max } \cos \left(\Omega_{s} t+\phi_{0}\right)
\end{array}\right.
$$

with

$$
\Delta p_{\max }=\frac{\Omega_{s}}{B} \Delta \phi_{\max }
$$

JUAS - Jan 2014-E.Métral
Page 78

JUAS

LESSON V

Measurement of the longitudinal bunch profile and Tomography

RF manipulations

The ESME simulation code

JUAS

The ESME simulation code
Want to calculate the evolution of a distribution of particles in energy and azimuth as it is acted upon by the Radio Frequency (RF) system of a synchrotron or storage ring? => Use ESME code Several RF systems and many other effects can be included
ESME \Rightarrow It is not an acronym. The name is that of the heroine of J. D. Salinger's short story "To Esme with Love and Squalor"

Code initially developed during the years 1981-82 for the design of the Tevatron I Antiproton
Source and first documented for general use in 1984
Homepage = http://www-ap.fnal.gov/ESME/

