LONGITUDINAL BEAM DYNAMICS EXAMINATION

Consider a proton synemotion with the following endracteristics.	
Injection kinetic energy	$E_{k,inj} = 30 \text{ GeV}$
Average machine radius	R = 5000 m
Number of dipoles	$N_d = 800$
Effective length of a dipole	$L_d = 4 m$
Energy gain per turn	$\Delta E_{turn} = 600 \text{ keV}$
RF voltage	$V_{rf} = 1 MV$
Ejection magnetic field	$B_{ej} = 1.2 \text{ Tesla}$
RF frequency	$f_{rf} = 9.5493 \text{ MHz}$
Total bunch length at ejection	$t_b = 10 \text{ ns}$

Consider a proton synchrotron with the following characteristics.

- 1) What are the bending angle and radius of curvature of a dipole?
- 2) Compute the magnetic field at injection?
- 3) Compute the rate of increase of the magnetic field dB/dt.
- 4) What is the minimum value of the RF voltage? Is the RF voltage given in the table sufficient?
- 5) Compute the synchronous phase?
- 6) The transition energy is reached after 10 s of acceleration. What is the value of γ_t ?
- 7) If the RF voltage is switched off, what is the variation of the revolution frequency df_{rev} for a variation of the magnetic field $dB/B = 10^{-3}$?
- 8) What is the value of the synchronous phase above transition? Why?
- 9) How long does it take to accelerate from injection to ejection?
- 10) What is the ejection energy?
- 11) Assuming that the beam is on the injection magnetic plateau, in which direction does the revolution frequency change if the beam momentum is decreased? What about the ejection magnetic plateau?
- 12) What are the values of the slip factor η at injection, transition and ejection?
- 13) Compute the harmonic number h. What are the values of the synchrotron period at injection, transition and ejection?
- 14) At ejection, what is the azimuthal phase extension $\Delta \theta$ (in radians) and the RF phase extension $\Delta \varphi$ (in radians) of the bunch? Compute the bunch momentum spread Dp/p at ejection (the bunch is matched in the RF bucket). Deduce the longitudinal bunch emittance in eV.s (assuming an elliptic area).
- 15) Comment about the beam behavior when the RF voltage is switched off, both far from and at transition.