

A review of the COMBI code X. Buffat, W. Herr, T. Pieloni

- Why ?
- How ?
- Future plans

COMBI – Why?

- COherent Multibunch Beam-beam Interaction
- Meant to study beam-beam coherent modes in the multibunch regime with maximum flexibility (many IPs, asymetric filling scheme, ...)
 - T. Pieloni, W. Herr, Models to Study Multi-bunch Coupling through Head-on and Long-range Beam-beam Interactions, EPAC 2006, Edinburgh, Scotland
 - T. Pieloni, A Study of Beam-Beam Effects in Hadron Colliders with a Large Number of Bunches, PhD thesis, EPFL, 2008
 - F. W. Jones, W. Herr, T. Pieloni, Self-Consistent Parallel Multibunch Beam-Beam Simulation Using A Grid-Multipole Method, Pac'09, Vancouver, Canada
- Benchmarked against :
 - BeamBeam3D (J. Qiang)
 - RHIC BTF measurement and observations of coherent motion in the LHC

Bunch transport

One bunch per process

+ 1 master

 Each bunch is described by its particle distribution in 6D

 Master knows the position of the bunches and communicate the action (with necessary info) to the bunches

Bunch Comunication

Bunch Comunication

Actions

- Linear transport (6D)
- Head-on colision (HFMM*)
- Long range collision (soft gaussian / FMM)
- Noise source (white / colored)
- Collimator (simple "in or out" model)
- Impedance (in progress**)
- Octupole

• ...

FMM (Fast Multipole Method)

- Compute field from charge distribution
 - J. Carrier, L. Greengard, V. Rokhlin, A Fast Adaptive Algorithm for Particle Simulation, Yale U. Comp. Sci. Dept. RR # 496. Sep.86, Revised Jan.87
- Still quite slow for large particle density
 - Especially when the beams are stlightly separated
- In a parallel implementation, the position and charge of all particles have to be send to the other process, very slow in clusters without shared memory

Hybrid FMM

- Designed for space charge :
 - F.W. Jones, H.O. Schönauer, New Space-Charge Methods in Accsim and Their Application to Injection in the CERN PS Booster, 1999 Particle Accelerator Conference, New York, USA

Used in BEAMX

- W. Herr, M.P. Zorzano, F. Jones, A hybrid fast multipole method applied to beam-beam collisions in the strong-strong regime, Workshop on Beam-beam Effects, Fermilab, Batavia, IL, USA, 25 - 28 Jun 2001
- W. Herr and F. Jones, Parallel computation of beam-beam interactions including longitudinal motion, PAC 2003, Portland, USA

HFMM

- Lower the number of macroparticle by gridding the core of the beam
 - Efficient transfer of the information between cores

Impedance - status

- Equally populated slices
- Kick based on LHC impedance table
- Multiple kick per turn possible

Future plans

- Benchmarking impedance with single bunch ongoing
- Implementation with multibunch also ongoing
- Implementation of a transverse damper forseen

Thanks a lot to Nicolas and Simon for the fruitfull collaboration