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once the transverse feedback system is switched off:
strong transverse oscillations and losses (within ms)
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The instability:

a standing-wave structure
with the &-wiggles within;
here 3 knots, i.e. k=3 mode
(rarely that nice)

nice exponential growth

slower then the
synchrotron motion,
AQ/Q.<0.3

2

an unstable head-tail mode

A PU Signal (arb. units)

¥ PU Signal (arb. units)
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an example for the
exponential growth

The instability at C392m:s:

A PU Signal (arb. units)
O

AQ=3.1e-4,

1=0.53ms,

AQ/Q=0.16

a general assumption so 0 500 1000 1500 2000
far has been: Turn Number

driven by the Resistive-
Wall Impedance
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Instability at C386ms
single rf

N_=370e10
AQ=2.3e-4,

A PU Signal (arb. units)

AQ/Q,=0.13

the mode k=3

the mode structure is not an
ideal head-tail, it is modified
by the impedance

¥ PU Signal (arb. units)

DN = O = N W A
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Instability at C491ms ;
single rf ‘—:’
S
w
N,=380e10 ot
AQ=0.6e-4, <
AQ/Q=0.064
6
the mode k=4? 2 i
higher mode index R
g
for later CTimes < 2
g
&5 0
s
W2
-3
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0.4
o 0.3
€ 02
g 0.1
Instability at C383ms £ o
: S -0.1
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2.5

an example .
m double rf
T 15}

related to the h=1 >

cavity: E 1

the h=2 cavity is S

shifted by 0.8,
the voltage of the h=2 0.5
cavity is the same.

single rf =======
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double rf, flat bunch

related to the h=1
cavity:

the h=2 cavity is
shifted by m,

the voltage of the h=2
cavity is a half (4kV).

U (arb. units)

Slngle rf EEEEEE.
double rf, flat bunch  e—

L
L \”M"‘
-0.5 0
¢

Vladimir Kornilov, Beam Studies in the PS Booster, CERN, August 29, 2012



O
= 5= M RF BUCKET: DOUBLE RF

double rf, short bunch

related to the h=1
cavity:

the h=2 cavity shift is & 0.5
equal zero,
the voltage of the h=2 0
cavity is the same.

arb. units)

U

| |
N double rf, short bunch R

T
Rg

single rf =======

-0.5
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Instability at C394ms
double rf, PSB standard

N_=500e10
AQ=1.3e-4
AQ/Q,=0.071

a complex mode structure
in double rf

A PU Signal (arb. units)
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Instability at C394ms
double rf, PSB standard
higher intensity

Np=950e10
looks like the k=2 mode in

the more dense, tail half of
the bunch
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questions appear

At PSB we observe Generally we know
the instability occurs at reproducible triggering of a collective instability is
cycle times irregular (example: at PS flat-bottom)

the instability is always and only in the the vertical Resistive-Wall impedance

horizontal plane at PSB is larger then the horizontal
the instability has a clear intensity the head-tail instability has no
threshold, depending on settings intensity threshold

higher mode index k at later Ctimes;
lower mode index k for shorter
bunches;

mode structure deformed by the Z; ;
no clear effect of weaker space-charge
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As the growth time , : . ! r .
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bunch length for the €,=const,
and measurements for single rf, V,=8kV
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synchrotron frequency
and

the synchrotron tune
for single rf, V,=8kV

Q. fy (kHz)
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the space-charge tune A L )‘OTPR
shift Qsc = 332¢
(rms-equiv. K-V beam) R —
the space-charge AQSC
parameter q —

Qs

Elliptic cross-section: Qo

(€,, €, rms emittances, £ = 2(5 + | ELE =
: T =y

g, total for the rms-equivalent K-V) \ QOy

Gaussian profile: AQ:;ax — 2AQSC

Space-charge tune spread: * different transverse amplitudes
* density variation along the bunch
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0'3 | | | | |
100
from the 0.25
measurements: 05 80
space-charge C
. Q 60 3
tune shift for o 0.15 o
single rf, -
40
V,=8kV, 0.1 o
300e10 ppb, -
horizontal 0.05 F
O ] ] ] ] ] O

300 350 400 450 500
Cycle Time (ms)

the space-charge parameter g is a flat function along the intensity;
very strong space charge regime => a minor change not crucial;
no Landau damping for the relevant (k<6) head-tail modes
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2
AQcoh . Abeam 0.025 T l l | I
AQsc bpipe vertical
0.02 -
_ 0015 -
o
S
0.01 -

here for the PSB vacuum  0.005 |-
pipe assumed:

two-thirds circular b=8cm,  ® oo aeo so0 4t 500
one-third elliptic, Cycle Time (ms)

horizontal h=8cm,

vertical w=3.5cm

horizontal
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the eigenfrequencies of the bunch head-tail modes
for the airbag bunch model

with arbitrary space-charge and coherent force:

AQk _ _AQSC ‘;AQcoh :t \/(AQSC ;AQcoh)2 + ]{32Qg
AQ AQ.con 2 AQcon
st D —3(1 T AQS: )+ Jqf(l - AQS: )+

O.Boine-Frankenheim, V.Kornilov, PRSTAB 12, 114201 (2009)
V.Kornilov, O.Boine-Frankenheim, PRSTAB 13, 114201 (2010)
M.Blaskiewicz, PRSTAB 1, 044202 (1998)
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with space charge 2 \
only, AQ_,,,=0 N~
0 |-
the k=0 mode is not .
affected; g -2
the positive modes éj
close to Q; o -4
the negative modes
close to the incoherent -6
tune and are strongly
-8

k=+2
k=+1
k=0

incoherent tune

damped

10
q=AQg. / Qg

20
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with a coherent tune

shift,
AQcoh/AQsc =0.1

the k=0 mode:

AQ= _AQcoh

the k>0 modes enter
the incoherent -6
spectrum

-2AQ . < AQ<O0 8

Re(AQ) / Qq

K=+1
k=0

incoherent tune

=> Landau damping 0 S
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AQ.on / AQq.

0.08
0.07
0.06

vertical
0.05 |

0.04 horizontal
0.03

0.02 .

0.01 .

0 | | | | |
300 350 400 450 500

Cycle Time (ms)

Landau damping is stronger in the vertical plane;
the damping contribution decreases along the cycle.
This may contribute to the horizontal exclusiveness
and to the later occurrence in CTime
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The real AQ_,, is 5
larger then the

5 | vertical

synchrotron tune. .

o L1 |

s horizontal

. o)

During the cycle, %0 3 |
other transverse ,
impedance must

—
|
|

cause mode coupling
and a fast TMCI. o L1 ! . . .
Space-charge tune 300 350 400 450 500
shifts prevent it. Cycle Time (ms)

This might be an experimental proof of the mode
coupling suppression by space charge

Theory predictions: Blaskiewicz prstab 1998; Burov prstab 2009
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F.Sacherer 1974
Y Y (—1)Z(wp)hi(wp — we)
AQp
1 + k E hk(wp — wg)
Wp = (p 4+ Qo)wo + kw,

_ IoGion -—ReZ, (w)
4mymcQow T stable -
=77 1’[/T I i;:_p
////// 2277

(W)
l unstable
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Evolution along the 20
cycle of the
chromaticity
frequency shift
(the k=0 mode)
and

the spectrum
position of the k=4
mode.

15

10

Frequency (MHz)

Cycle Time (ms)
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Beam spectrum of

the k=2 mode for

different bunch

profiles:

the sinusoidal bunch, ~
the Gaussian bunch.

A realistic bunchis
more complicated

This causes some
uncertainty for the
impedance the
bunch couples to.
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To cope with this
difference,

the spectrum of a
sinusoidal bunch can

be stretched, hereby .
a factor 1.4. =

the sinusoidal bunch
the Gaussian bunch
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N /LS
| | | | | | | |
The spectrum width tr 7
is also an uncertainty
factor. 0.8 I .
Here the bunch
spectrum of the k=4 = 0.6 -
mode for
the sinusoidal bunch, 0.4 -
the Gaussian bunch.
0.2 | _
0 NV AVAVA '/
5 4 3 -2 -1 0 1 2 3 4 5
f,
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N /LS
1.5 1
Evolution of the 1 -
lower (unstable) 05 |
bunch spectrum part stable
along the PSB cycle . ~ O instable
= -05 -
Higher-order modes ~ 1
cross the Resistive- )
Wall Impedance later -1.5 -
in Ctime. 5 _
-2.5 I I 1 I I I =
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| | I |
As the bunch spectrum 1k -
migrates during the
cycle, it can become 0.8 RW Impedance| [| k=4 head-tail mode
unstable due to
coupling to the 0.6
Resistive-Wall <
impedance, here a 0.4
“narrowband”
impedance. 0.2
Another low-frequency 0
(MHz) narrowband 5 4 3 2 1 0 1 2 3 4 5
impedance can not be ft,
ruled out.
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Growth rates of the
head-tail modes along

the PSB cycle, w
as given by the 5
Sacherer model, g
for the Resistive-Wall g
impedance g

=

the main uncertainty
for the quantitive
estimations is due to
the bunch spectrum
(here a preliminary
example for €=-0.8,
detailed analysis in
progress)
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2 |
Lower-order head- 15 L i
tail modes for
shorter bunches. 1k -
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By changing the
lattice tunes a (small) L
systematic shift of the 496
instability Ctime has

been observed. g 424
Q;=4.19: around C384
Q,=4.20: around C386
Q,=4.23: around C389 4.2
Q,=4.25: around C392

4.22
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Effect of the lattice
betatron tune on the
evolution of the
frequency position for
the k=4 mode.

f, (MHz)
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N/

The unstable head-tail modes observed during the PSB ramp are
normally strongly deformed by the impedance

Intensity thresholds, growth rates and the mode structure are
compared for single rf bucket and for double rf types: PSB standard,
flat-bunch, short-bunch

The PSB bunches are in the strong space-charge regime

The Landau damping due to image charges with the direct space
charge, if strong enough for PSB parameters, may contribute to the
horizontal instability and to the later Ctimes of the instability

Analysis of the time evolution of the head-tail modes according to the
Sacherer theory can explain higher-order modes for later Ctimes,
lower-order modes for shorter bunches, and the Resistive-Wall
impedance (or a low-frequency norrowband) as the driving force.
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