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N /LS
* high-frequency (0.7GHz) oscillations
e fast losses
* growth faster then the synchrotron motion,
here AQ/Q.=11
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not a standing wave
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Is it an unstable eigenmode?

The growth is exponential.

But: | choose plotting the signal at one point in the bunch.
the reason?
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IS IT AN ABSOLUTE INSTABILITY?
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V,=200 kV
N,=116e10 ppb

head: AQ=1.2e-3
middle:AQ=1.45e-3
tail: AQ=1.6e-3

shifted from C312
by 300 turns

A PU Signal (arb. units)
)
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General feature:

=> This is probably not an unstable eigenmode

at the head part AQ is smaller
at the tail part AQ s larger
the oscillation migrates towards tail
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Under AQ>Q, there is no reinforcing mechanism, no clear exponential growth
of an eigenmode. Thus: associated with the Beam Break-Up mechanism.
BEAM BREAKUP INSTABILITY IN THE CERN PS NEAR TRANSITION

R. Cappi, E. Métral, G. Métral, CERN, Geneva, Switzerland
EPAC’2000

the best case, or to beam losses in the worst. Figure 2
shows that some particles are lost, and that they

Fast beam losses, due to a vertical coherent instability ~ correspond to the particles with the largest vertical
of high frequency, have been observed in the PS near  oscillations in Figure 1. The relevant beam and machine
transition energy, with the high-intensity single-bunch  parameters are collected in Table 1.

beam for the neutron Time-of-Flight facility (n-ToF). By

increasing the longitudinal emittance, the beam could be ----.-. .
stabilised. These phenomena can be described by the ....’.. B

beam breakup theory, since near transition the

longitudinal positions of particles are almost frozen, as --.....

in the linac case. Comparison between observations and :

theory, using Brandt and Gareyte’s formula for single-

bunch beamgbreakup in circular accelerators, shows g;)od ...-"I III"IIIII“III'
seement ||t 71111
I' ‘
1 INTRODUCTION ‘l.alllllh.ll
Several beam dynamics obstacles have been i .. .'ﬂ'.

encountered during the setting-up of the high-intensity

single-bunch beam for the n-ToF ‘facility [1,2],. and tl'ley .-- -------

were successfully cured to achieve the desired high . . . .
© Figure 1: Single-turn signal from a vertical beam

bunch intensity of 7x10" protons. One of them was a . : o
. y . p .. position monitor (the bandwidth is 100 kHz-500 MHz).
strong vertical instability near transition energy, already . . .
The time scale is 5 ns/div.

- . 2
nhecarvad at a hineh intencity af v 1N? nratane  and

Abstract
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measurements for the
“€=0 near transition” lattice
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Observations at the PS we need to understand

bunches with larger hV, are more stable
(higher V,, higher thresholds; h=16 always stable)

for the “€=0 near transition” lattice

the instability is around C313ms;

while for the “€=-0.2 near transition” lattice
the instability is around C315ms

increase of the transverse emittance, which means
weaker space charge, does not make a difference
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the measure for the usual (¢ and 6p) Landau Damping
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assuming a small chromaticity near transition
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the measure for the usual (¢ and 6p) Landau Damping
PS Cycle Time (ms)
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assuming stronger chromaticity near transition

=> similar to our observation
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Bunch Length (ns)

the bunch length
(as to C300ms)
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A simplified picture: how the bunch length should evolve
near transition (neglecting space charge, beam loading)
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This means that for the low voltage V,=110kV there is no
increase of the momentum spread near transition like here:

PS Cycle Time (ms)
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Simplified calculation for €,=const, bunch parameters V,=200kV
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For the Landau Damping from the coasting-beam approach this means:
PS Cycle Time (ms)
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Shorter bunch and thus larger 6p provides stronger Landau damping
for high rf voltage, meaning a higher instability threshold
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Other stabilizing aspects suggested:

The absolute value of the synchrotron tune Q
(larger: stabilizing)

The bunch length relative
to the instability wave length L /A, ,
(smaller: stabilizing)

The characteristic frequency of particles sweeping
through the instability wiggles Q=2 t,, fgg Q;
(larger: stabilizing)
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Overview of bunch parameters relevant
to the Beam Break-Up Stabilization (measured during the MD):

the bunch length near transition
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Overview of bunch parameters relevant

to the Beam Break-Up Stabilization (measured during the MD):

the momentum spread near transition
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Overview of bunch parameters relevant
to the Beam Break-Up Stabilization (measured during the MD):

the particle-wave sweeping frequency

Can contribute to
the differences with
h=8, but can not be
the reason for the
stability with h=16
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Overview of bunch parameters relevant
to the Beam Break-Up Stabilization (measured during the MD):
The absolute value of the synchrotron tune Q,
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Overview of bunch parameters relevant
to the Beam Break-Up Stabilization (measured during the MD):

the bunch length relative to the instability wave length

Can contribute to the
differences with h=8,
and is it the main
reason for the
stability with h=167?
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An example for the parameter 1 |-
comparison
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Turn Number, 10°
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Turn Number, 10°
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Very strong space-charge regime
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Ng. 10™° (ppb)
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Landau damping,
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An example for
stabilization with
octupoles:
oscillations, no
losses.
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An example for
stabilization by
octupoles:
oscillations,

no losses.
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The transverse oscillations near transition at PS seem not to be due to
an absolute instability but are related to a Beam Break-Up mechanism

Landau damping from the coasting-beam approach illustrates the
occurrence time of the instability and the ¢,6p-related damping

A higher instability threshold for large rf voltages seems to be due to
shorter bunch and thus larger &p, providing stronger Landau damping

Other damping mechanisms: Q.-value, bunch length / wave length,
particle-wiggle sweeping frequency are analyzed and compared

The bunches are in the very strong space charge regime

The instability can be stabilized by octupoles
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