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Mohl — Schonauer Equation

 In 1974, D. Mohl and H. Schonauer suggested to describe coasting
beam oscillations by the following equation:
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Space charge term

d°x
dt?
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« The only non-trivial term in this equation is the space charge force:
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Space charge term

d°x
dt?

+0,.2Q72x +20,2Q,|Q.x + Q.. (x, —x)]=0.

The only non-trivial term in this equation is the space charge force:
Qsc (Xi o X)

Why non-linear space charge forces are described by a linear term?

Does it mean that it is valid only for K-V (constant density profile)
distribution?

No, it is valid for any beam profile. The reason is following:



Comments to Mohl-Schonauer Equation (MSE)

Space charge term: Q. (JL)(Xi —)_()

The single-particle motion consists of 2 parts:
— free oscillations (typically with beam size amplitude, or J, = &5 )
— driven by the coherent offset oscillations (much smaller than the beam size).

The equation describes the driven oscillations only, so it results from
linearization of the original non-linear space charge term over infinitesimally
small coherent motion, and averaging over the betatron phases of the free
incoherent oscillations.



MSE as a unique choice

« This equation is a unique possibility for
— Alinear equation (driven oscillations are small!)

— With time-independent coefficients ( = rigid slice approximation)
— With the given tunes and incoherent SC tune shifts Q.. (J,)

— Space charge force oc (x. — X)



MSE is based on a rigid-slice approximation

% | 0707x +20,°Q,]0, %+ Q. (x ~X)]=0.
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lattice wake space charge

The assumption for the rigid slice approximation is that a core of any
beam slice moves as a whole, so there is no inner motion in it.

coasting beam

This is a good approximation, when the space charge is strong
enough (Burov & Lebedev, 2008):

| Q.. [>>AQ..

Otherwise, the beam shape oscillates as well, and MSE is not
necessarily valid. 10



Coasting beam: Landau damping (Burov, Lebedev, 2008):
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Landau Damping

Landau damping is proportional to the phase space density of the
resonance particle:

A =-7(AQy, )| AQ, f,J, 5(AQ +Q, —Rev,)dI

Thus, with strong space charge, it is determined by the distribution
tails.

Typically, the far tails are neither predictable nor measurable, and
not even reproducible in many cases. That is why, at strong space
charge, the stability thresholds are predictable and reproducible with
poor accuracy, like factor of 1.5-2.
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Coasting Beam Thresholds (Burov, Lebedev, 2008)

« Thresholds are determined by A = ImAQ, . For a round Gaussian beam:
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Direct application to bunched beams

Coasting beam results sometimes can be applied to bunched
beams.

— For short-wavelength and fast oscillations (much shorter than the bunch
length, much faster than the synchrotron frequency) — the so-called
microwave instability;

— For multi-bunched beam, at zero chromaticity and long wavelength
(much longer than the bunch spacing)
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Bunched Beams (ho SC — Sacherer theory)

Jeans-Vlasov Equation:

a_w 6w 8w F@w 0
ot 8¢ 6¢ " op,

Fx(2) = IW(Z —Z)X(z)dz’ = IW(Z — )Xy (")dI”
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Bunched Beams (ho SC — Sacherer theory)

Jeans-Vlasov Equation:

WV o OV OV OV _
ot 8¢ 6¢ " op,

0;

Fx(2) = IW(Z —Z)X(z)dz’ = IW(Z — )Xy (")dI”

w="1,03)0,(3.)+ F(3,.4)3(J..4.)e ™™

{—— Linearization

¢)=—-D,2J, fo'(JX)ei¢X <&——— Dipole motion
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Bunched Beams (ho SC — Sacherer theory)

« Jeans-Vlasov Equation:

a_w 6w 8w F@w 0
ot 8¢ 6¢ " op,

FX(Z) = IW(Z —Z )X(Z )dZ = .[W(Z — Z')X'l//(F’)dF’
w="1,3)9,3.)+fQ0,,4)30.,4)e ™

f J ’¢x):_D\/2‘Jx fO'(Jx)ei¢X

Thus, the only function to be found is @(JS,¢S) = Rn(Js)elm¢s = gnm(‘Js’¢s)’
describing the longitudinal phase space variation of the transverse offset.
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Typical solution for the offset modulation 0, m(Js. &)
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Wake+ : weak head-tail

 Wake yields its coherent tune shift for every mode. If it is small

Q. <kdvi—vial  (weak head-tail), it can be calculated as a diagonal
matrix element (similar to QM):
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Wake+ : strong head-talil

In the opposite case |Q, |2v,-v...| , the nearest modes are coupled
by the wake, leading to instability even at =0 . This is called strong
head-tail or transverse mode-coupling instability, TMCI.

For electron machines (no space charge), typically modes k=0 and
k=-1 are coupled sooner than other, since Q. =(0W|0) is maximal,
and the modes are shifted down.

After coupling of modes k and k+1:

B. Salvant et al, HB2008,
TMCI simulations,
no space charge

0.3
I, (mA)




Mohl-Schonauer Equation (MSE) for bunched beams

Using slow betatron amplitudes % (6) |
X (0) = eXp(_ing)Xi (0)

the MSE writes as

X, (0) =1Q(z, (9))]x, (6) = X(0, 7, (O] =iV, (O)x, () — 1V __

) . wake
space charge chromaticity

% =dx /d6, C==Eln,  p=rP-y?, E=dQ/d(Aplp),  V.(0)=4(0)

Here ¢ and 7 are time and distance along the bunch, both in angle
units.
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MSE for bunched beam — cont.

o After a substitution x,(8)=y,(@)exp(-icr;(8)) with a new variable Y,
the chromatic term disappears from the equation, going instead into

the wake term:
y. (0) =iQ(z; (O))]y; (0) — ¥(6, 7, (0))] - ix\Wy

R s
Sy 0. Wy = !Mr—s)exp(ig(r—s))p(sw(s)ds.

Thus, for no-wake case, the bunched beam modes do not depend
on the chromaticity, except the head-tail modulation «<ex(-iér).

Neither Landau damping, nor eigenfrequencies depend on the
chromaticity for W=0.
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Bunched Beam: Square Well Model

For a square potential well and KV transverse distribution, the head-
tail modes with space charge were described by Mike Blaskiewicz
(1998).

For the air-bag distribution, there are two particle fluxes in the
synchrotron phase space:

p z A forward

backward

Since Q.. =const MSE is easier to solve in this case.
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general result:

Coherent tunes, no wake

2
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Landau dampinq

The wake-driven growth rate ImQ, can be compensated by Landau
damping A, . Stability requires

A Z21ImQ,

For the square-well model, the Landau damping is identical to the
coasting beam case, except the chromaticity is dropped for the
bunched case <¢+nn—>nn (Blaskiewicz, 2003)

As a result, the condition for the resonant particles to exist (LD
condition) for the square well case is

KAQ, =Cmax(Q..,|Q.); C~0.2-0.5

Thus, for the strong space charge case, Q.. >>kAQ,, there is no
Landau damping for square potential well.

What about Landau damping for other bucket shapes? e



General solution of MSE

o After a substitution x,(8)=y,(@)exp(-icr;(8)) with a new variable Y,
the chromatic term disappears from the equation, going instead into
the wake term:

y. (0) =iQ(z; (O))]y; (0) — ¥(6, 7, (0))] - ix\Wy

R s
Sy 0. Wy = !Mr—s)exp(ig(r—s))p(sw(s)ds.

From here, a 2" order ordinary IDE follows (A. Burov, 2009):

P ey -y ¥ =0

dr dr
j f (v, 7)dv
2 —o0

us=— :
jvz f (v, 7)dv

Q..(z) is cross-section averaged.
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No-wake (space charge only) modes, Gaussian bunch

These modes do not look too different from no-space charge case.
The only significant difference is that for strong space charge, modes are counted
by a single integer, while conventional zero-space-charge modes require 2

integers: for azimuthal and radial numbers (due to their possible variations along
synchrotron phase and action).
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Landau damping for strong space charge (SC)

Landau damping results from energy transfer from coherent modes
to incoherent motion of resonant particles.

For strong space charge Q.. >>Q, , particles and modes are tune-
separated by Q.. , so their resonance may seem to be impossible.

However, this is not generally correct, since the SC tune shift goes
to 0 at the bunch tails, where this resonance may happen.

The higher is SC, the further to the tails it happens. Thus, space
charge strongly suppresses Landau Damping.
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L andau damping — results

According to (Burov, 2009), for Gaussian bunch LD is estimated as:

i (Q Y
A, =0.1k™"Q, | =
? [Q J

sC

(the numerical factor ~ 0.1 — best fit of V. Kornilov, GSI, to his numerical
simulations, 2010)

Note: mode k=0 is not damped at all. The damper is needed for it
and may be for a few higher modes.
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Vanishing TMCI

« While the conventional head-tail modes are numbered by integers,
v, =kQ,, k=0,£1+2,..
the space charge modes are numbered by natural numbers:
V, o« k?.

« This is a structural difference, leading to significant increase of the
transverse mode coupling instability: the most affected lowest mode
has no neighbor from below.

Vi
ool _ 1 Coherent tunes of the Gaussian bunch
L for zero chromaticity and constant
_H_._._.___.--"""'_ .
- wake versus the wake amplitude.
h\ e P
Note high value of the TMCI
threshold.

100 KWONerff (0)
QZ
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TMCI threshold for arbitrary space charge

A schematic behavior of the TMCI threshold for the coherent tune
shift versus the space charge tune shift.
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Summary

Theory of transverse coherent oscillations of beams is approximately
established now — both for coasting and bunched cases, with any space
charge.

The remaining problem — intermediate SC = Qs =KQ; (TMCI condition?)

For strong space charge, stability threshold is determined by far tails of
distribution — hardly visible and not always reproducible. This limits the
prediction accuracy — both for coasting and bunched cases.

For bunched beam with strong space charge, recent simulations (O. Boine-
Frankenheim and V. Kornilov, GSI) so far confirm the theory. More
simulation details are needed and expected. No observations to verify the
theory are yet available.

For TMCI, moderate SC improves stability, but too high SC makes the
bunch more unstable.
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