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Möhl – Schönauer  Equation 

• In 1974, D. Möhl and H. Schönauer suggested to describe coasting 

beam oscillations by the following equation: 
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Coherent tune shift, in a frequency domain: 



Space charge term  

 

 

 

• The only non-trivial term in this equation is the space charge force: 
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• The only non-trivial term in this equation is the space charge force: 
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Space charge term  

 

 

 

• The only non-trivial term in this equation is the space charge force: 

 

 

• Why non-linear space charge forces are described by a linear term? 

Does it mean that it is valid only for K-V (constant density profile) 

distribution?  

 

• No, it is valid for any beam profile. The reason is following: 
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• The single-particle motion consists of 2 parts:  

– free oscillations (typically with beam size amplitude, or                     )  

– driven by the coherent offset oscillations (much smaller than the beam size).  

 

• The equation describes the driven oscillations only, so it results from 

linearization of the original non-linear space charge term over infinitesimally 

small coherent motion, and averaging over the betatron phases of the free 

incoherent oscillations.  

 

Comments to Möhl-Schönauer Equation (MSE) 
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MSE as a unique choice 

• This equation is a unique possibility for 

–  A linear equation   (driven oscillations are small!)  

 

– With time-independent coefficients ( more on that below…) 

 

– With the given tunes and incoherent  SC tune shifts  

 

– Space charge force  
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• The assumption for the rigid slice approximation is that a core of any 

beam slice moves as a whole, so there is no inner motion in it.  

 

 

 

 

 

• This is a good approximation, when the space charge is strong 

enough: 

 

 

• Otherwise, the beam shape oscillates as well, and MSE is not 

necessarily valid. 

 

Time-independent             = rigid-slice approximation 
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Coasting beam: Landau damping (Burov, Lebedev, 2008): 
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Landau Damping 

• Landau damping is proportional to the phase space density of the 

resonance particle: 

 

 

 

• Thus, with strong space charge, it is determined by  the distribution 

tails. 

 

• Typically, the far tails are neither predictable nor measurable, and 

not even reproducible in many cases. That is why, at strong space 

charge, the stability thresholds are predictable and reproducible with 

a moderate accuracy. In the RR it was 20-30% in the intensity.  
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Coasting Beam Thresholds (Burov, Lebedev, 2008) 

• Thresholds are determined by                    . For a round Gaussian beam: 
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Direct application to bunched beams 

• Coasting beam results sometimes can be applied to bunched 

beams. 

 

– For short-wavelength and fast oscillations (much shorter than the bunch 

length, much faster than the synchrotron frequency) – the so-called 

microwave instability; 

 

– For multi-bunched beam, at zero chromaticity and long wavelength 

(much longer than the bunch spacing)  
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Antiproton instabilities at Fermilab Recycler Ring  

 Typical instability snapshot (L. Prost et al, 2011,  

http://lss.fnal.gov/archive/test-tm/2000/fermilab-tm-2498-ad.pdf):   
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•Instability was always at the tail 

 

•Frequency 70 MHz – by the damper 

 

•Threshold prediction : 30%  


