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Mohl — Schonauer Equation

 In 1974, D. Mohl and H. Schonauer suggested to describe coasting
beam oscillations by the following equation:
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Space charge term
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« The only non-trivial term in this equation is the space charge force:



Space charge term

d°x
dt?

+0,.2Q72x +20,2Q,|Q.x + Q.. (x, —x)]=0.

« The only non-trivial term in this equation is the space charge force:

Q.. (xi - >_<)



Space charge term
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The only non-trivial term in this equation is the space charge force:
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Why non-linear space charge forces are described by a linear term?

Does it mean that it is valid only for K-V (constant density profile)
distribution?

No, it is valid for any beam profile. The reason is following:



Comments to Mohl-Schonauer Equation (MSE)

Space charge term: Q. (JL)(Xi —)_()

The single-particle motion consists of 2 parts:
— free oscillations (typically with beam size amplitude, or J, = &5 )
— driven by the coherent offset oscillations (much smaller than the beam size).

The equation describes the driven oscillations only, so it results from
linearization of the original non-linear space charge term over infinitesimally
small coherent motion, and averaging over the betatron phases of the free
incoherent oscillations.



MSE as a unique choice

« This equation is a unique possibility for
— Alinear equation (driven oscillations are small!)

— With time-independent coefficients ( more on that below...)
— With the given tunes and incoherent SC tune shifts Q.. (J,)

— Space charge force oc (x. — X)



Time-independent Qs«(J) = rigid-slice approximation
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lattice wake space charge

The assumption for the rigid slice approximation is that a core of any
beam slice moves as a whole, so there is no inner motion in it.

coasting beam

This is a good approximation, when the space charge is strong
enough:

| Q.. [>>AQ..

Otherwise, the beam shape oscillates as well, and MSE is not
necessarily valid. 8



Coasting beam: Landau damping (Burov, Lebedev, 2008):
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Landau Damping

« Landau damping is proportional to the phase space density of the
resonance particle:
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« Thus, with strong space charge, it is determined by the distribution
tails.

« Typically, the far tails are neither predictable nor measurable, and
not even reproducible in many cases. That is why, at strong space
charge, the stability thresholds are predictable and reproducible with
a moderate accuracy. In the RR it was 20-30% in the intensity.
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Coasting Beam Thresholds (Burov, Lebedev, 2008)

« Thresholds are determined by A = ImAQ, . For a round Gaussian beam:
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Direct application to bunched beams

Coasting beam results sometimes can be applied to bunched
beams.

— For short-wavelength and fast oscillations (much shorter than the bunch
length, much faster than the synchrotron frequency) — the so-called
microwave instability;

— For multi-bunched beam, at zero chromaticity and long wavelength
(much longer than the bunch spacing)
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Scope ADC Counts

Antiproton instabilities at Fermilab Recycler Ring

Typical instability snapshot (L. Prost et al, 2011,
http://Iss.fnal.gov/archive/test-tm/2000/fermilab-tm-2498-ad.pdf):
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