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BB Collective Elfects Studies

® |nstability studies are important for the Beta
Beam project, since

= High intensity ion beams are foreseen

= Collective Effects could limit the final performance

* Will study all machines

= Today only the Decay Ring

COLLECTI VE

“Transverse Resonance
Broad Band Impedance”
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3 Tools

n |® Three ways to find the Bunch Intensity Limit, Np*":
Lul = A multi-particle tracking program 6. Rumolo ot o |
0 in time domain, “HEADTAIL” Note2002-036-AP
D ° °
s = A theoretical pr.ogl;am in ) p— l
frequency domain, LEP-TH/88-05
N
-
< = Peak current values into a coasting beam formula
_ gives the “Coasting Beam Equation” (here for £=0):
20 E. Métral, CERN,

D Ngh — 32 R|77|€l CUT- Overvieweor?SingIe-Beam

x, 22 Coherent Instabilities in
< Y 3\/§7T <6>33,y Z B C‘RJ— giriaTarAcSCZIerators
n
I
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3 Tools

n |® Three ways to find the Bunch Intensity Limit, Np*":
L = A multi-particle tracking program 6. Rumolo ot o I
0 in time domain, “HEADTAIL” Note2002-036-AP
O
- : .
2 A theoretical pr.ogl;am 'n . Y.H.Chin CERN- '
frequency domaln, LEP-TH/88-05
~
-
< = Peak current values into a coasting beam formula
_ gives the “Coasting Beam Equation” (here for £=0):
20 E. Métral, CERN,
D Ngh — 32 R|77|€l CUT- Overview of Single-Beam
; 2122 Coherent Instabilities in
< oY 3\/§7T <6>33,y Z B C‘RJ— gir(ca:LT:r:ccelerators
n
I R, = “Shunt Impedance” (see next slide) ’
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R, of the DR e

® Detailed calculations of Transversal Shunt Impedance, R,
require design assumptions of ALL DR components, instead:

e Let’s estimate R, PR based on a machine with same
circumference as DR; SPS (R.%P* =20 MQ/m)

= Modern, smooth designh of the vacuum pipe
compare to old SPS =@ Improvement by factor 10

— RJ_DR ~ 2 MQ/m

= The DR is a less general machine than the SPS
(not required to handle many type of beams)

M P E D A NDUC E

= No need for as many kickers as SPS (and modern
kicker design) & Improvement by factor 2

— R, PR ~ 1 MQ/m

® Further;in 20 years improved Broad Band Feedback System
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R, of the DR g

® Detailed calculations of Transversal Shunt Impedance, R,
require design assumptions of ALL DR components, instead:

e Let’s estimate R, PR based on a machine with same
circumference as DR; SPS (R.%P* =20 MQ/m)

= Modern, smooth designh of the vacuum pipe
compare to old SPS =@ Improvement by factor 10

— RJ_DR ~ 2 MQ/m

= The DR is a less general machine than the SPS
(not required to handle many type of beams)

M P E D A NDUC E

= No need for as many kickers as SPS (and modern
kicker design) & Improvement by factor 2

— B ~ | MQ/mJ

® Further;in 20 years improved Broad Band Feedback System
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C. HanSen CER
i N,

Npth vs, R} in DR s
mD

* According to the Coasting Beam Equation (CB Eq.)
R, is the only parameter not fixed by FP6 design

°* Let’s find required shunt impedance, R "¢9;

T HRESHUOLD
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T HRESHOLD

Nbﬂh vs. R L in DR

anse

ollect N, NUF

B etCat’L‘;e Effect Studie: ng10
€a e cay Ring a

According to the Coasting Beam Equation (CB Eq.)

R, is the only parameter not fixed by FP6 design

®
®
N" vs. R for DR *He with BB, |
500010’ -
4500%‘
G000 5 B et Required "He Bunch Intensity
3500}
30001
fz"zsoo:— (1/7)th = 400Hz
2000
1500 3
1000} \\\_
500 HEADTAIL ™ .
:'lllllllllllllllllllllllllllllllllll lllllll-l'lI
0 2 4 6 8 10 12 14 16 18 20 22 24

R [MQ/m]

Let’s find required shunt impedance, R, "9;

th 18 :
6000&(109 _N"vs. R for DR "°Ne with BB, |

b
i

|

5000

40007

<3000 1

Required '8Ne Bunch Intensity

2000

1000

HEADTAIL

I o e~ ORI LU P RV

0

2 4 6 8 10 12 14 16 18 20 22
R [MQ/m]
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C. HanSen CER
i N,

Npth vs, R} in DR s
mD

* According to the Coasting Beam Equation (CB Eq.)
R, is the only parameter not fixed by FP6 design

°* Let’s find required shunt impedance, R "¢9;

C N" vs. R for DR *He with BB, | ,
| s000x1® L Lr N" vs. R for DR "*Ne with BB, |
- L ‘\\
0 4500 6 B \\\\ h Required '€Ne Bunch Intensity
- Required He Bunch Intensity L
4000.:_. ..............................................................................
I 35001 10"
m | 3000F E
fz‘“zsoo;— (1/7)th = 400Hz £ :
W | 000F
m = 10"
1500 ' :
I 1000; \ -
500 HEADTAIL \ S
F :'1111'1Illlllllllllllllllllllllllllll'll'll-l'l? l ; : I S WS S S . A A -l.l-Ll
0 2 4 6 8 10 12 14 16 18 20 22 24 10" 10

R (M/m]
R [MQ/m]

* R.™1 =0.15 MQ/m to allow Npth = 3el2 '2Ne
So since R, < R, PR~ ] MQ/m — Redesign of DR
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o C. Hansep CER
. N,

Npth ys, R} in DR ety
mD

* According to the Coasting Beam Equation (CB Eq.)
R, is the only parameter not fixed by FP6 design

* Let’s find required shunt impedance, R, "9;

& N" vs. R for DR °He with BB
10° . lJ N" vs. R for DR "*Ne with BB _LJ
_ 5000 . <
D 4500 - Required '8Ne Bunch Intensity
N e Required °He Bunch Intensity -
I 35005 102 HEADTAIL
3000 fromTm e
1] = i
52-02500:_ ('/T)"‘ = 400Hz ﬁz.o
W | 000F
= 10"
14 1500 - -
500 HEADTAIL . . I
F :'llllllllllllllllllllll[lllllllll[ll 1111111-1'12 l ll
0 2 4 6 8 10 12 14 16 18 20 22 24 !
2 R MQ/m] b
R [MQ/m]
* Npth = 6ell '8 Ne can be used to get N,'" for A
all other ions by using that CB Eq. goes as V" « -3
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|l ON S

L L

R.PR = Bunch Intensity Limit, N,
| Ma/ [el2] |[% of Np™™]
‘He 5.0 100
'*Ne 0.6 16
*He 5.0 57
'*Ne 0.6 32
‘He 5.0 3)
'®Ne 0.6 8|
8Li 3.0 60
°B .1 59
SLi 3.0 30
°B .| 29
8Li 3.0 12
°B .| 12
8Li | 8B [*He
60 | 59 | 100
30 [ 29 | 50
12 112 | 21

DR Intensity Limit for ]

A Donin;, Sum

| Ions | Fluxes '10'8] | Years | (sin2613)min ‘ NH,(sin? 2613)min

®He ®y = 2.9 5 5x 101 No Sensitivity
18Ne oy =1.1 5

“He b x 2 2 6 x 104 No Sensitivity
18Ne dp/2 8

5He &y x 2 2 1x109 No Sensitivity
¥Ne do/5 8

SLi o, 5 15x10% | 3x102
*B i 5

8Li dg x 2 5 7% 1074 1.5 x 10~2
*B ®, x 2 5

SLi dy x5 5 2aE10 8 x 1073
*B Py x 5 5

8Li ®, 3 1.7 x 103 3 x 1072
*B i 5

“He D, 2

SLi ®g x 2 3 7% 1071 1.5 x 1072
*B ®g x 2 5

“He dp x 2 2

8Li ®y x 5 3 3x 104 8 x 10-3
*B d, x 5 5

5He ®y x 5 2

PO Lattice

Note; In Donini’s table SF = 10-*
while we are using SF = 5-10-3

Mary
ms
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Decay Ring Redesign

e So far all studies based on EUI ' SOL FP6 parameters

. Data Base:
® A CCOr d N g to C B E CI . http://j2eeps.cern.ch/beta-beam-parameters/

Nih 32 R|n|ef?w,
v 3V2m (B, Z°6%cRL if we increase the slip-
factor, [n|, the bunch intensity limit would increase

e — Redesign of the DR lattice to increase |n| which
also increases the average beta function: A chn ny,,

Yer =27 ) [ |m]| =0.00127 — |ns] = 0.00276

— %
v = 1857 |(B),, =173.64m — (8),=160.4 m

R EDESIGN

Y2

R

e — Npthincrease by factor (N2/ni)/(B2/B1) Q. Bcr
2 =1

2R|n|dmax P
® Matching the bunch in the bucket:
Qs\/

— Increase voltage by factor na2/n;

D

hZeV,¢|n|
27T62Et0t

V,; = 26.75 MV .
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http://j2eeps.cern.ch/beta-beam-parameters/
http://j2eeps.cern.ch/beta-beam-parameters/

-

Yir — 27.0 —
Vrf =11.96 MV —
Leff = 36% —

N" vs. R for DR "Ne with BB l_|

Required '8Ne Bunch Intensity

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Z

M|

- 600010’ ’

)
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a 4000

L | %°3000]
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[Y | HEADT

0

D

0 12 14 16 16 20 22
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Decreasing Vi, Increasing V

Yir — 18.6
V,; = 26.75 MV
Leff = 39%

N" vs. R for DR "*Ne with BB Q

x109

.............................................................................

?fAIL \\

k3 g h ] -
r_f-—f—d—qlﬂ-f—rf-!—g—r-r P e e e i s A L4

) 2 10 12 14 16 18 20 22
R [MQ/m]
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Decreasing Vi, Increasing V
Yer = 27.0 = v = 18.6

y4 Vrf —=11.96 MV — Vrf = 26.75 MV

i Leff:36% — Leff:39%

- | N"vs. R for DR "Ne with BB, | ~ | N"vs. R for DR "*Ne with BB, |
. —i

n

0

L

m C

k[ R =015MO/m |- 7T =03MQ/m

N 1 R (Mo/m] b ' RMo/m] e

* So R,™1is still a factor 3.3 too small (R.PR ~ | MQ/m
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Decreasing Vi, Increasing V

v Vip =11.96 MV — Vi, = 26.75 MV
i Leff:36% — Leff:39%
— N" vs. R ffor DR ®Ne with BB l_| N"vs. R ffor DR ®Ne with BB JJ
N N s e pormomensousamessensenl i [\ \\ T —
- equ:re '8Ne Bunch Intensity 5 e Required '8Ne Bunch Intensity
wi| | P e
joz HEADTAIL 1021 - HEADTAIL? FOSE
A ¢ : g :
ll] %Z? B %Z?
m 10"? 10"5—
x| = R™=015MQ/m — R=0.3MQ2/m
N 107 R (MQ/m] L L R (MQ/m] AU
* Npth = 12ell '8Ne can be used to get N'" for A
all other ions by using that CB Eq. goes as wa X 5
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|l ON S

L L

DR

R, PR = Bunch Intensity Limit, Np*"

1 MQ/m [el2] |[% of Np"°™]
‘He 10 224
'Ne 1.2 35
‘He 10 112
'Ne 1.2 70
He 10 112
'Ne 1.2 175
8Li 5.9 129
¢B 2.1 127
8Li 5.9 65
B 2.1 64
8Li 5.9 26
°B 2.1 95

8Li| 8B [*He

129 127 | 224

65164 (112

26 | 25 | 45

Note; In Donini’s table SF = 10-*
while we are using SF = 5-10-3

A Donin;, Sum

| Ions | Fluxes 10'8] | Years | (sin®26:13)min . NH,(sin? 2613)min
®He dy =2.9 5 5x 1071 No Sensitivity
18Ne oy =1.1 5
“He g x 2 2 6 x 104 No Sensitivity
18Ne dp/2 8

. 6He dy x 2 2 1x103 No Sensitivity
Ne do/5 8

8L | o, 5 15x103 | 3x102
*B i 5
8Li ®) x 2 5 7x10~4 1.5 x 10~2
*B ®, x 2 5
SLi gy x 5 5 Al || 8 x 1073
*B ®y x 5 5
8Li ®, 3 1.7 x 10-3 3 x 102
*B d 5
5He d, 2
SLi ®) x 2 3 7x 1071 1.5 x 1072
*B ®g x 2 5
“He ®p x 2 2
8Lj dy x 5 3 3 x 10—4 8 x 10-3
*B ®, x 5 5
He ® x 5 2

[ntensity Limit for New Lattice

Mary
ms
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Conclusions

® Transversal Broad Band Impedance enforces

redesign of the Beta Beam Decay Ring
(Other collective effects still to be studied)

N

®* A new design of the Decay Ring (by A. Chance)

O

= Increases slip-factor, voltage and straight fraction

0 = More of the Beta Beam scenarios are allowed
9 (assumed R, PR =1 MQ/m):
R.PR = Bunch Intensity Limit, N,** R PR = Bunch Intensity Limit, N,**
- I MQ/m | [el2] |[% of Nu"™] I MQ/m | [el2] |[% of Nu"m]
U He 50 100 ‘He 10 224
ENe 0.6 16 ®Ne 1.2 35
Z SHe 50 52 He 10 112
8Ne 0.6 32 ' Ne l.2 70
SHe 5.0 52 He 10 112
D ENe 0.6 8l Ne 1.2 175
8Li 3.0 60 — 8Li 59 129
U ‘B I.1 59 / ‘B 2.1 127
8Li 3.0 30 8Li 59 65
‘B I.1 29 ‘B 2.1 64
8Li 3.0 12 8Li 59 26
‘B .1 12 ‘B 2.1 25
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Backup Slides




T'o Do

® Same study in longitudinal plane 7y (w)

= Ongoing HEADTAIL simulations, but . T%¢ (2 -2)
can’t use MOSES since only for L

_!

1
m
| ANAAAAA
| ANV NAAANNY

—pedare [1 1]

BETEEEEE

e Same with Narrow Band

Same with Resistive Wall Impedance )

e Same with Space Charge %
9 / |

e Same with the already existing SPS & PS ] |
AL

O uUuTLOOK
e
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E LDS

F

W A K E

Resonance Imp@dan@@

* Wake Fields (time domain; W(t)) €an
- be trapped in pipe cavities

- cause “Resonance Impedance”

e Resonance Impedance (frequency domain; Z(w)=F[W(t)]),
- in the Transverse plane can be modeled by an

RLC circuit as:

RJ_ Wy Q = “Quality Factor”
ZJ_ ((,d) — w Wyr = “Resonance Angular

. W, W Frequency”
1 + ZQ w0 W R, = “Shunt Impedance”

- For low Quality Factor (Q=1) the Wake Field is
short lived and the impedance is “Broad Band”

Wednesday, January 26, 2011



E LDS

F

W A K E

Resonance lmpedance

C
R, - = o e

* Wake Fields (time domain; W(t)) €an

- be trapped in pipe cavities ,T*
(]
I
- cause “Resonance Impedance” "™
_JYQV)Y\_
e Resonance Impedance (frequency domain; Z(w)=F[W()]), | _
. —W—
- in the Transverse plane can be modeled by an &
RLC circuit as:
Wy Q = “Quality Factor” = |
R
ZJ_ ((U) — W Wr = “Resonance Angular| =~ W¢ = Bc/by
. Frequency”
1 W w
+ ZQ N W R, = “Shunt Impedance” | (see next slide)

- For low Quality Factor (Q=1) the Wake Field is
short lived and the impedance is “Broad Band”

<10

= 2" 2x GHz

e Will show results from "
|

“Transverse Resonance o~ |
Broad Band Impedance” N 2 =]
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h

R. = 20 MQ/m (SPS)

| 1/zvs. N, for ¢ = 30d0 [eVs] (DR “Ne with BB;) | , HEADTAIL -
2000 »

MOSES

- o

1800 — .
1600 |
1400
1200 -
1000

800

600

Growth Rate [1/s]

400

200

04 3 a0 50

Number Particles per Bunch

R. = 2 MQ/m (RHIC)

1/t vs. Ng for ¢, = 30d0 [eVs] (DR "*Ne with BB|) = (HEADTAIL « MOSES
2000 -

| -

1800 — o

{ .
1600 -
— =
¢ o

— o

1400 —
1200 —

~— 14
o

1000 —

T HRESHOLD

Growth Rate [1/s]

4 4 4 4 4 4 - - - - 4 4 D 4

- > S5 1 1 1
950 200 250 300 350 400 450 500
Number Particles per Bunch

4 . 4 4

th

x10°

£, Scan for BNe  a/me - 4ok

'N"vs. ¢, for DR "*Ne with BB, |

60

50

40

30

20

10

rd

7/
CB Eq/./’

HEADTAIL

600

550

500}

450

400

350

300

250}

200

150

1 l Rl lind l B l Ll L | L 1 L | | | |
30 35 40 45 S50 55 60
e, [eVs]
N"vs. ¢, for DR "°Ne with BB,
9
x10
2 CB Eq.
S
- HEADTAIL
i i l hddnd l Ak dd o d bl b i l LI - i l i - . l i
30 35 40 45 50 55 60
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Shunt Impedance

® The “Shunt Impedance”, R,, is the main parameter in
the RLC model of the Resonance Impedance

R\
n ZJ_((U) — —
. L+iQ (% - )
-
W fe Modeling existing machines the same way we have
PS SPS LHC LHC RHIC
(at top energy) | (no collimators)
R. [MQ/m] 3 20 30 2 2

\
g2
y

W A K E
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