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Collective effects in the longitudinal plane
Numerical and computational tools

SPS ecloud effects

Frozen synchrotron motion:

Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:
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Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:
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SPS ecloud effects

Nonlinear synchrotron motion:

Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:
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Collective effects in the longitudinal plane
Numerical and computational tools

Motivation 1

Synchrotron motion does not preserve the longitudinal
position over several turns

The tune footprint is obtained over several turns

The color dimension looses its meaning

⇒We need to find a quantity that is preserved under synchrotron
motion to refurnish the color dimension with a meaning
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Basic Dynamics

Collective effects in the longitudinal plane
Numerical and computational tools

Goal

What this presentation should be about:

not a presentation of new results

by no means any claim for mathematical rigor

rather an attempt to gather different ressources to summarize
the known theory in a more or less complete and
comprehensible manner

rather with an appeal to physical intuition
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Motivation
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Basic Dynamics

Basic physics
Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Initialisation:

Basic objects

Parameter manifold:

Configuration manifold:

Map:

M∼= Rm

N ∼= Rn

Φ :M→N

Derived objects

World bubble:

Phase space:

Jacobian:

Θ = Φ(U ⊂M) ∼= Rm

Ω = T ∗N ∼= R2n

J = DΦ ∈M(m× n,R)

All physics is in finding Φ
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Basic physics
Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Initialisation:

We create our universe by declaring two manifolds and connecting
them with a map

The parameter manifoldM is our world

The configuration manifold N is some quantity we are
interested in

The map Φ is an embedding of our world into the target space
and as such describes the evolution of the target space
quantities
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Basic physics
Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
In our intuition we are (always) using them

We (always) start with a collection of points which are, a priori, completely
unstructured (i.e. a mesh of an accelerator structure (without connectivity
information) or the time steps in a particle tracking code (with no ordering))

We want to be able to talk about neighbourhoods, derivatives, tangent
spaces, metrics in order obtain a predictable evolution (a function of the
parameter manifold) for any quantity that lives in our world. Our collection of
points must thus be endowed with a smooth connectivity which is done
formally via a differentiable structure (equivalence class of atlases where an
atlas is a family of compatible charts on an open cover of the parameter
manifold1). Then, locally, our collection of points becomes isomorph to the
Euclidean space; it locally obtains the structure of a linear vector space
within which we are fully equipped with all our well-known tools of calculus

1s. Abraham, Marsden pp. 31
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Basic physics: the principle of least action

In this case we can define:

Action
The action S is defined as the volume of the world bubble:

S =

∫
Θ
dΦ

The principle of least action

Given a fixed subspace U , a map Φ is physical if and only if the
action S is stationary

δS = 0
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Specialisation to classical electromagnetic theory

The Lagrangian

To introduce a useful formalism it is expedient to write the action as

Action

S =

∫
Φ(U)

dΦ =

∫
U
dmx

√
det(JJ T ) =

∫
U
dmxL

Thus, we have introduced the Lagrangian

Lagrangian

L =
√

det(JJ T )
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Classical limit and electromagnetic theory

Introduce classical limit

δ = nλ3 � 1

δ: characteristic dimensionless density parameter of a quantum gas

λ =
√

2π~2
mkBT

: thermal de Broglie wavelength

The action becomes the length of the world-line:

S =
∫
dl , dl2 = −c2dt2 + d~x2

Introduce electromagnetic theory via U(1)-gauge coupling by
moving from the standard to the covariant derivative

∂µ → Dµ = ∂µ + igAµ

A: gauge fields

The action becomes the covariant length of the world-line:

S =
∫
Dµl =

∫
Ldt
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Basic Dynamics

Basic physics
Specialisation to classical electromagnetic theory

Intuition of the classical limit

A small number of particles with a wavefunction that is represented as an
evolving Gaussian wavepackage: ψ(x, t)→ exp

(
− x2

σ2

)
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Basic physics
Specialisation to classical electromagnetic theory

Intuition of the classical limit

For sufficiently many particles at low densty constructive superposition of
wavefunctions establishes a correlation between space and time coordinates via
delta-functions: ψ(x, t)→ δ(x(t)− x′)→ x(t)
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Intuition of electromagnetic theory

Gauge invariance of the Dirac field

ψ(x)→ eiα(x)ψ(x)

Directional derivative

~∇~e ~ψ(~x) = lim
h→0

~ψ(~x+ h~e)− ~ψ(~x)

h

~ψ(~x)

∂µ ~ψ(~x)

eiα(x)

−→

−→

−→

~ψ(~x+ h~e)

Dµ = (∂µ + ieAµ) ~ψ(~x)

Kevin Li Synchro-Betatron Motion 20/ 70



Motivation
Basic Model

Basic Dynamics

Basic physics
Specialisation to classical electromagnetic theory

Intuition of electromagnetic theory

Gauge invariance of the Dirac field

ψ(x)→ eiα(x)ψ(x)

Directional derivative

~∇~e ~ψ(~x) = lim
h→0

~ψ(~x+ h~e)− ~ψ(~x)

h

~ψ(~x)

∂µ ~ψ(~x)

eiα(x)

−→

−→

−→

~ψ(~x+ h~e)

Dµ = (∂µ + ieAµ) ~ψ(~x)

Kevin Li Synchro-Betatron Motion 20/ 70



Motivation
Basic Model

Basic Dynamics

Basic physics
Specialisation to classical electromagnetic theory

Intuition of electromagnetic theory

Gauge invariance of the Dirac field

ψ(x)→ eiα(x)ψ(x)

Directional derivative

~∇~e ~ψ(~x) = lim
h→0

~ψ(~x+ h~e)− ~ψ(~x)

h

~ψ(~x)

∂µ ~ψ(~x)

eiα(x)

−→

−→

−→

~ψ(~x+ h~e)

Dµ = (∂µ + ieAµ) ~ψ(~x)

Kevin Li Synchro-Betatron Motion 20/ 70



Motivation
Basic Model

Basic Dynamics

Basic physics
Specialisation to classical electromagnetic theory

One-parameter action and electromagnetic Lagrangian

One-parameter action and electromagnetic Lagrangian

S =

∫
L d4x S =

∫
Ldt

L = −ρmc
√
ẋµẋµ + jµA

µ L = −mc
√

1− ~v2

c2
− qV + q~v · ~A
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Electromagnetic Hamiltonian

Hamiltonian
A Legendre transform of the Lagrangian

H = P q̇ − L with P =
∂L

∂q̇

yields the Hamiltonian

H(q, P, t) =

√
(~P − q ~A)2c2 +m2c4 + qV (1)
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Basic Dynamics
Symplectic structure

Least action and Hamilton equations of motion

δS = δ

∫
P dq −H dt

=

∫
δP dq + P δ(dq)− δH dt−H δ(dt)

=

∫
P.I.
dq δP − dP δq − ∂H

∂q
dt δq − ∂H

∂P
dt δP − ∂H

∂t
dt δt+ dH δt

=

∫ (
dq − ∂H

∂P
dt

)
δP −

(
dP +

∂H

∂q
dt

)
δq +

(
dH − ∂H

∂t
dt

)
δt

= 0

Equations of motion

q̇ =
∂H

∂P
, Ṗ = −∂H

∂q
, Ḣ =

∂H

∂t
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Symplectic structure

The Legendre transform makes the independent variable time and
together with the principle of least action/equations of motion unleashes
the full symplectic structure of the theory yielding:

the symplectic manifold (Ω, ω0) (Phase space, Poisson bracket)

ω0 : TqN × TqN → R , (u, v) 7→ ω0(u, v)

because ω0 is nondegenerate, it defines a 1-form

ω1 : TqN → T ∗qN , u 7→ ω0(u, ·) (〈u|)

let’s use this 1-form to implicitly define a very special vector field

ω0(XH , Y ) = −dH(Y )⇔ (JXH , Y ) = −(~∇H,Y )

q ∈ N , J =

(
0 1
−1 0

)
symplectic structure matrix
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Hamiltonian vector field
We have thus defined the Hamiltonian vector field

XH = J · ~∇H =: H :

What is so special about this Hamiltonian vector field?

Infinitesimal time evolution

XH = J · ~∇H =

f∑
α=1

∂H

∂qα
∂

∂pα
− ∂H

∂pα

∂

∂qα

ψ̇(t0) = −XH · ψ(t0) = − : H : ψ(t0) = −[H,ψ(t0)]

Finite time evolution

ψ(t0 + t) = exp(− : H : t)ψ(t0)

The Hamiltonian is the generator for translations in time for any function ψ!

q ∈ N , J =

(
0 1
−1 0

)
symplectic structure matrix
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Liouville’s theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville’s theorem)

Kevin Li Synchro-Betatron Motion 27/ 70



Motivation
Basic Model

Basic Dynamics
Symplectic structure

Liouville’s theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville’s theorem)

Kevin Li Synchro-Betatron Motion 27/ 70



Motivation
Basic Model

Basic Dynamics
Symplectic structure

Liouville’s theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville’s theorem)

Kevin Li Synchro-Betatron Motion 27/ 70



Motivation
Basic Model

Basic Dynamics
Symplectic structure

Liouville’s theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville’s theorem)

Kevin Li Synchro-Betatron Motion 27/ 70




