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Abstract

The consequences of an isolated RF power trip are analysed. We determine the beam current for
which the induced cavity voltage or extracted beam power is sufficiently large as to require an
immediate beam-dump. The possibility to re-inject, accelerate and coast a new beam with an
unavailable RF power transmitter is also analysed.
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1 Introduction

We want to examine what happens if an LHC klystron trips in coast and, if it cannot be restarted, what
are the conditions necessary for injecting a new and probably weaker beam.

2 Calculation of Cavity Voltage and Beam-Extracted Power

We base our calculations on the well-proven formula (for a derivation see Appendix) for the necessary
generator incident wave I, (complex) in equilibrium — neglecting the beam gap transients — for a given cavity

voltage V., the synchronous phase angle' @, the average DC beam current I pc and the normalized bunch
form factor” f;,, the main coupler Q.y, cavity frequency wy and detuning Aw
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The corresponding power can be calculated as
3) P =10, ®O RL]+m’[L]) x ~gorr
For superconducting’ cavities Qy is so large compared to Qe that we can neglect its inverse in the above
formulas.

2.1 RF Trip in Coast

When a power generator trips, I, becomes immediately zero and the system changes its equilibrium state
with the characteristic time scale of T= Q./0) (see later). Since both real and imaginary parts of I, become
zero, we can add the squares of both equations getting the condition
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hence for the induced voltage
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The imaginary part of I, and I, are — apart from the sign — identical, hence the imaginary part of I, is also
zero. The real part of I, has the same two components as the real part of I, for which both components cancel,
hence the real part of I, is twice this component and we obtain straightforwardly

~ 21 £
6) o= b.oc_Jb 2
L+ Aw 0, /@)
and the ‘reflected’ power — in this case the power stripped off the beam — becomes

2 (R1Q) Ous (lnoe 1)
1+ QAw Q,, /@)

For a steady beam, cavity detuning is chosen such that the imaginary part of I, becomes zero (see
appendix (A19)), but for LHC with its large beam gaps we have to work with (about) half-detuning, i.e. we
have in coast with @=180° for the nominal cavity voltage Vom
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! Convention for proton machines: @=0 at the rising RF zero crossing
2 Normalization such that for point bunches fi=1, limiting condition -1< f, <1
3 without quench, to be precise



Injecting this condition into (5a) and (7a) we obtain
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Using the standard values, (R/Q)=45 Q, Q=100,000 and V,,,=2 MV, we get the following graphs
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Fig. 1: Induced cavity voltage as function of the effective beam current,
Asymptotic limit is 4 MV, 2 MV corresponding to I, pcfp= 0.26 A.
(for LHC in coast at 400 MHz we have f,~= 0.9)
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Fig. 2: Stripped off beam (‘reflected’) power as function of effective beam current.
Asymptotic limit is 1780 kW, 300 kW corresponding to I, pcfp= 0.20 A.
(for LHC in coast at 400 MHz we have f,~ 0.9)

We see that as the necessary half-detuning also increases with beam current, the induced voltage (and
‘reflected’ power) does not rise proportionally to (quadratic with) the beam current — as would otherwise be
the case — but levels off. It can be seen easily that the asymptotic values will be

(8a) Vidw = 2 View = 4 MV and
(8b) P, =27V, (RO Q.,)=1780 kW



Normally the cavity voltage and beam current are in quadrature when @=180° (as in coast in LHC) and
there is no energy transfer. However, now the beam drives the cavity and the voltage builds up to produce
maximum power transfer. To keep the ‘reflected’ power below 300 kW — to prevent overloading the
circulator and load — the maximum effective current for the above conditions is about 0.20 A. To prevent the
induced cavity voltage becoming larger than the nominal 2 MV, the maximum effective beam current is
about 0.26 A, hence the power condition is more stringent. With f, = 0.9, this means about 0.22 A, less than
half the nominal current, can be accepted.

When the trip arises, the voltage builds up so quickly that the tuner has no time to move sufficiently to
prevent this build-up, see illustration in Figs. 3 and 4. Thus the high power RF equipment would have to
withstand this excess power during a significant fraction of a second. It is certainly risky to rely on the RF
power hardware withstanding this without damage.
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Fig. 3: Rise of the cavity field (0 - 500 Lis) for O..,=20,000 (minimum, fastest, in red),
O =100,000 (for coast, in green) and Qey=200,000 (maximum, slowest, in blue).
(The vertical ‘ticks’ indicate one turn of about 89 lis)

P/Pmax
1,

0. 8; /

0. 4;

0.2

50 100 150 200 250 ' [MS]

Fig. 4: Rise of the extracted beam power (0 - 250 Ls) for O..,=20,000 (minimum, fastest, in red),
O =100,000 (for coast, in green) and Qey=200,000 (maximum, slowest, in blue).
(The vertical ‘ticks’ indicate one turn of about 89 lis)

2.2 Re-injection of a New Beam

To reduce the induced voltage and stripped off power we can lower Q. of the coupler to its minimum
(20,000) and detune the cavity to a maximum. We assume that within the tuning range 50 kHz freedom is
still guaranteed at least in one direction, i.e. from (5a) and (7a) we conclude
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For the nominal (average) DC current of 0.55 A this means with £,=0.9 that we expect 0.17 MV induced
voltage and 17 kW stripped off power, which should be tolerable without problems for the hardware. Also
the remaining 7 cavities should be able to supply 2.3 MV (6.3 MV/m) instead of 2 MV (5.5 MV/m) to
replace the missing single cavity for the total voltage.

With the lowest Q.y, the dead cavity produces an impedance of = 0.9 MQ in the ring, limiting the stable
beam current at injection to about nominal for a 0.7 eVs bunch [1].

3. Conclusion

If the coasting beam is above about half the nominal beam current, stripped off power risks destroying the
RF power hardware; hence the beam should be dumped immediately. Even if the current is below this value,
the beam will encounter a significant synchronous phase angle jump, e.g. 2 MV plus the induced
decelerating voltage have suddenly to be supplied by the 7 remaining cavities, corresponding to a phase
angle of more than 8°. The consequences of the corresponding beam perturbations are difficult to estimate.

For a new beam one might envisage detuning the cavity and lowering Q. of the coupler for the cavity
with the dead klystron so that the induced voltage and reflected power become small. However, even with
the minimum Q. of = 20,000, this cavity presents an impedance of 0.9 MQ in the ring.

A feedback system summing up all cavity voltages and acting with the available ones might improve this
situation; however the technical difficulty is considerable, having in mind that for reliability reasons the
present system is made of (twice) eight clearly separated individual cavity-klystron systems.
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Appendix: The Fundamental Beam-Cavity-Generator Relations

We assume steady state currents and voltage, hence transients are not considered. We base our
calculations on the following lumped circuit model. The cavity is presented by the LCR-block, the coupler
by the transmission line with impedance Z on which we have the incident (generator) wave current I, and the
reflected wave current I,. The beam is presented as a current source. The cavity is excited to voltage V under
these conditions.

Fig. Al: the lumped circuit model, cavity modelled by LCR,
coupler by transmission line of impedance Z

The generator emits a wave with frequency w and implicitly we assume that a// dynamic variables are
proportional to exp(iw( ). The cavity is tuned to &y, not necessarily identical to .
For any transmission line we have the relations
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With the RF beam current I, g the current I cg through the LCR-block is
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On the other hand we can express the same current I cr as the sum of the currents through its parallel
elements, all proportional to the excitation voltage V
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Combining (A4) and (A3b) we get
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We have the general relation LC = 1/, for the resonance frequency” hence
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We can assume that the detuning of the cavity, Aw= wy - W, is very small compared to w. Then we can
approximate

(A7) - = - (wrhw) = -2 wAw
and (A6) becomes

* R only changes this relation significantly for extremely small Qo, not the case in our context
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Now we have to express the lumped circuit quantities C, R and Z by cavity quantities, L being already
expressed by C with LC = 1/wy’.
Carrying a charge q from one plate of a capacitor to the other one, results in the voltage change
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while a charge q travelling through a cavity with (R/Q) leaves a voltage
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For any resonator the relation Qy=wRC holds, hence injecting (A11) yields
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The transmission line, modelling the power coupler, presents an energy leak corresponding to a resistor Z
in parallel to the resistor R. In fact the coupler’s Q. is just defined as the Q-value of a cavity of infinite Q,
fed by this coupler, hence we have
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Filling in these cavity quantities in the lumped circuit equation (A8) we obtain
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I rr i1s complex and can be expressed as sum of real and imaginary part. We agree to define the complex
phase of all waves such that V is purely real. The synchronous phase angle is the angle of the RF voltage
when the beam arrives. In electron machines — where one works generally close to maximum energy transfer
— the phase angle @ is called zero if beam and voltage are in phase. Therefore for V proportional to
exp(iux), the beam RF current has to be proportional to exp(itt — iQec)-

For proton machines the phase angle @is called zero at the rising zero crossing of the RF voltage, i.e. we
have @= @ — 90°. Using the latter convention for the further calculations we get
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The complex Fourier spectrum of a repetitive beam passage for infinitely short bunches has equal line
height (the DC current) for all frequencies from —oo to +co. For the corresponding real spectrum (having no
negative lines) equivalent positive and negative lines of the complex spectrum exactly add up; hence they are
twice the DC current. But there is one unique line, the zero-frequency line, with the unchanged magnitude.
Hence for point bunches any such line of I, gr corresponds to 2 I, pc. For bunches of finite length this factor 2
will become lower for higher frequency-lines’ and to take this effect into account, we add a relative bunch
form factor f,, that is normalized to 1 for infinitely short bunches. Then we obtain for the general case
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Combining (A14) and (A15b) yields the real and imaginary part of the incident wave I, creating together
with the beam current the voltage V

~ V L L . . _V—Aw
(Al6) I, = (2(R/Q) (Qo + Q@J +1, pe /s sm((ﬂ)] + i EEI,,,Dcfb cos(¢) R/ Q)J
Using (A2) and (A13) we also get the reflected current
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Evidently, we have the usual power-current relation for alternating current (I and V are peak values)
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> and may even invert its sign but stays always absolutely below 2.



We also see that the steady state optimum detuning, which minimizes the (absolute) reflected current, is
obtained for imaginary zero component of I, hence
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Above transition energy coast takes place at @= 180°, hence Aw will be negative in LHC.
Furthermore we can (if technically foreseen) adapt Q. so that for a given beam current the real part of
the reflected current also disappears with the condition
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and for a superconducting cavity with Qy>> Q. we simply obtain
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For completeness we also write the basic formula for electron machine convention of Q..
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