TRANSVERSE INSTABILITIES

E. Métral (CERN)
\rightarrow The purpose of this course is to explain (theoretically) such pictures of "transverse (single-bunch) instability"

Observation in the CERN PSB in ~1974
(J. Gareyte and F. Sacherer)

Observation in the CERN PS in 1999

SINGLE PARTICLE TRANSVERSE MOTION (1/3)

- A purely linear synchrotron oscillation around the synchronous particle is assumed (with no coherent oscillations)

$$
\ddot{\boldsymbol{\tau}}+\omega_{s}^{2} \tau=0 \quad \tau=\hat{\tau} \cos \left(\omega_{s} t+\psi_{0}\right)
$$

- For the transverse betatron oscillation, the equation of unperturbed motion, e.g. in the horizontal plane, is written as

$$
x=\hat{x} \cos \left[\varphi_{x}(t)\right] \quad x^{2}+\frac{\dot{x}^{2}}{\dot{\varphi}_{x}^{2}}=\hat{x}^{2}
$$

- The horizontal betatron frequency is given by $\quad \dot{\varphi}_{x}=Q_{x} \Omega$

SINGLE PARTICLE TRANSVERSE MOTION (2/3)

$$
\begin{gathered}
\Rightarrow \quad Q_{x}(p)=Q_{x 0}\left(1+\xi_{x} \frac{\Delta p}{p_{0}}\right) \quad \Omega(p)=\Omega_{0}\left(1-\eta \frac{\Delta p}{p_{0}}\right) \\
\Rightarrow \quad \dot{\varphi}_{x}=Q_{x} \Omega \approx Q_{x 0} \Omega_{0}\left[1-\dot{\tau}\left(1-\frac{\xi_{x}}{\eta}\right)\right]
\end{gathered}
$$

and

SINGLE PARTICLE TRANSVERSE MOTION (3/3)

- In the absence of perturbation, the horizontal coordinate satisfies

$$
\ddot{x}-\frac{\ddot{\varphi}_{x}}{\dot{\varphi}_{x}} \dot{x}+\dot{\varphi}_{x}^{2} x=0
$$

- In the presence of electromagnetic fields induced by the beam, the equation of motion writes

$$
\begin{gathered}
\ddot{x}-\frac{\ddot{\varphi}_{x}}{\dot{\varphi}_{x}} \dot{x}+\dot{\varphi}_{x}^{2} x=F_{x}=\frac{e}{\gamma m_{0}}[\vec{E}+\vec{v} \times \vec{B}]_{x}\left(t, \vartheta=\Omega_{0}(t-\tau)\right) \\
\text { When following the particle along its trajectory }
\end{gathered}
$$

SINGLE PARTICLE TRANSVERSE SIGNAL (1/2)

- The horizontal signal induced at a perfect PU electrode (infinite bandwidth) at angular position ϑ in the ring by the off-centered test particle is given by

$$
\begin{aligned}
& s_{x}(t, \vartheta)=s_{z}(t, \vartheta) x(t)=s_{z}(t, \vartheta) \hat{x} \cos \left(\varphi_{x}\right) \\
\Rightarrow & s_{x}(t, \vartheta)=e \hat{x} \cos \left(\varphi_{x}\right) \sum_{k=-\infty}^{k=+\infty} \delta\left(t-\tau-\frac{\vartheta}{\Omega_{0}}-\frac{2 k \pi}{\Omega_{0}}\right)
\end{aligned}
$$

- Developing $\cos \left(\varphi_{x}\right)$ into exponential functions and using relations given in the longitudinal course, yields

$$
\begin{array}{ll}
s_{x}(t, \vartheta)=\frac{e \Omega_{0}}{4 \pi} \hat{x} e^{j\left(Q_{x 0} \Omega_{0} t+\varphi_{x 0}\right)} \sum_{p, m=-\infty}^{p, m=+\infty} j^{-m} J_{m, x}(p, \hat{\tau}) e^{j\left[\omega_{p m} t+m \psi_{0}-p \vartheta\right]} \\
+c . c . \sim \omega_{p m}=p \Omega_{0}+m \omega_{s}
\end{array}
$$

SINGLE PARTICLE TRANSVERSE SIGNAL (2/2)

with

$$
J_{m, x}(p, \hat{\tau})=J_{m}\left\{\left[\left(p+Q_{x 0}\right) \Omega_{0}-\omega_{\xi_{x}}\right] \hat{\boldsymbol{\tau}}\right\}
$$

$$
\Longrightarrow
$$

$$
\begin{aligned}
& s_{x}(\omega, \vartheta)=\frac{e \Omega_{0}}{4 \pi} \hat{x} e^{j \varphi_{x 0}} \\
& \sum_{p, m=-\infty}^{p, m=+\infty} j^{-m} J_{m, x}(p, \hat{\tau}) \delta\left\{\omega-\left[\left(p+Q_{x 0}\right) \Omega_{0}+m \omega_{s}\right]\right\} e^{j\left(m \psi_{0}-p \vartheta\right)}+c . c .
\end{aligned}
$$

- The spectrum is a line spectrum at frequencies $\left(p+Q_{x 0}\right) \Omega_{0}+m \omega_{s}$
- Around every betatron line $\left(p+Q_{x 0}\right) \Omega_{0}$, there is an infinite number of synchrotron satellites m
- The spectral amplitude of the mth satellite is given by $J_{m, x}(p, \hat{\tau})$
- The spectrum is centered at the chromatic frequency $\omega_{\xi_{x}}=Q_{x 0} \Omega_{0} \frac{\xi_{x}}{\eta}$

STATIONARY DISTRIBUTION (1/2)

- In the absence of perturbation, \hat{x} and $\hat{\tau}$ are constants of the motion
- Therefore, the stationary distribution is a function of the peak amplitudes only

$$
\Psi_{x 0}(\hat{x}, \hat{\tau})
$$

- No correlation between horizontal and longitudinal planes is assumed and the stationary part is thus written as the product of 2 stationary distributions, one for the longitudinal phase space and one for the horizontal one

$$
\Psi_{x 0}(\hat{x}, \hat{\tau})=f_{0}(\hat{x}) g_{0}(\hat{\tau})
$$

$$
\int_{\hat{x}=0}^{\hat{x}=+\infty} f_{0}(\hat{x}) \hat{x} d \hat{x}=\frac{1}{2 \pi} \quad \int_{\hat{\tau}=0}^{\hat{\tau}=+\infty} g_{0}(\hat{\tau}) \hat{\tau} d \hat{\tau}=\frac{1}{2 \pi}
$$

STATIONARY DISTRIBUTION (2/2)

- Since on average, the beam center of mass is on axis, the horizontal signal induced by the stationary distribution is null

$$
\begin{aligned}
S_{x 0}(t, \vartheta) & =N_{b} \int_{\hat{x}=0}^{\hat{x}=+\infty} \int_{\varphi_{x 0}=0}^{\varphi_{x 0}=2 \pi} \int_{\hat{\tau}=0}^{\hat{t}=+\infty} \int_{\psi_{0}=0}^{\psi_{0}=2 \pi} f_{0}(\hat{x}) g_{0}(\hat{\tau}) s_{x}(t, \vartheta) \hat{x} \hat{\tau} d \hat{x} d \hat{\tau} d \varphi_{x 0} d \psi_{0} \\
& =0
\end{aligned}
$$

PERTURBATION DISTRIBUTION (1/3)

- In order to get some dipolar fields, density perturbations $\Delta \Psi_{x}$ that describe beam center-of-mass displacements along the bunch are assumed
- The mathematical form of the perturbations is suggested by the singleparticle signal

$$
s_{x}(t, \vartheta)=\frac{e \Omega_{0}}{4 \pi} \hat{x} \sum_{p, m=-\infty}^{p, m=+\infty} j^{-m} J_{m, x}(p, \hat{\tau}) e^{j\left(\varphi_{x 0}+m \psi_{0}\right)} e^{-j p \vartheta} e^{j\left[\left(p+Q_{x 0}\right) \Omega_{0}+m \omega_{s}\right] t}
$$

$$
+c . c
$$

- Low-intensity

$$
\Delta \Psi_{x}=h_{m}(\hat{x}, \hat{\tau}) e^{-j\left(\varphi_{x 0}+m \psi_{0}\right)} e^{j \Delta \omega_{c m}^{x} t}
$$

$\Delta \omega_{c m}^{x}=\omega_{c}-m \omega_{s} \ll \omega_{s}$

Coherent betatron

frequency shift to be determined

PERTURBATION DISTRIBUTION (2/3)

- In the time domain, the horizontal signal takes the form (for a single value m)

$$
S_{x}(t, \vartheta)=2 \pi^{2} I_{b} \sum_{p=-\infty}^{p=+\infty} e^{-j p \vartheta} \sigma_{x, m}(p) e^{j\left[\left(p+Q_{x 0}\right) \Omega_{0}+\omega_{c}\right] t}
$$

Fourier/transform

$$
S_{x}(\omega, \vartheta)=2 \pi^{2} I_{b} \sum_{p=-\infty}^{p=+\infty} e^{-j p \vartheta} \sigma_{x, m}(p) \delta\left\{\omega-\left[\left(p+Q_{x 0}\right) \Omega_{0}+\omega_{c}\right]\right\}
$$

with

$$
\sigma_{x, m}(p)=j^{-m} \int_{\hat{x}=0}^{\hat{x}=+\infty} \int_{\hat{\tau}=0}^{\hat{\imath}=+\infty} h_{m}(\hat{x}, \hat{\tau}) J_{m, x}(p, \hat{\tau}) \hat{x}^{2} d \hat{x} \hat{\tau} d \hat{\tau}
$$

PERTURBATION DISTRIBUTION (3/3)

- High-intensity

$$
\Delta \Psi_{x}=\sum_{m} h_{m}(\hat{X}, \hat{\boldsymbol{\tau}}) e^{-j\left(\varphi_{x 0}+m \psi_{0}\right)} e^{j \Delta \omega_{c m}^{x} t}
$$

TRANSVERSE IMPEDANCE

EFFECT OF THE PERTURBATION (1/10)

$$
\begin{gathered}
\Psi_{x}\left(\hat{x}, \varphi_{x 0}, \hat{\tau}, \psi_{0}, t\right)=\Psi_{x 0}+\Delta \Psi_{x} \\
\Rightarrow \quad \Psi_{x}=f_{0}(\hat{x}) g_{0}(\hat{\tau})+\sum_{m} h_{m}(\hat{x}, \hat{\tau}) e^{-j\left(\varphi_{x 0}+m \psi_{0}\right)} e^{j \Delta \omega_{c m}^{x} t}
\end{gathered}
$$

- Vlasov equation

$$
\frac{\partial \Psi_{x}}{\partial t}+\frac{\partial \Psi_{x}}{\partial \hat{x}} \dot{\hat{x}}+\frac{\partial \Psi_{x}}{\partial \varphi_{x 0}} \dot{\varphi}_{x 0}+\frac{\partial \Psi_{x}}{\partial \hat{\tau}} \dot{\hat{\tau}}+\frac{\partial \Psi_{x}}{\partial \psi_{0}} \dot{\psi}_{0}=0
$$

\Rightarrow Linearized Vlasov equation $\frac{\partial \Psi_{x}}{\partial t}=-\frac{d f_{0}(\hat{x})}{d \hat{x}} g_{0}(\hat{\tau}) \dot{\hat{x}}$
$\Rightarrow j \sum_{m} h_{m}(\hat{x}, \hat{\tau}) e^{-j\left(\varphi_{x 0}+m \psi_{0}\right)} \Delta \omega_{c m}^{x} e^{j \Delta \omega_{c m}^{x} t}=-\frac{d f_{0}(\hat{x})}{d \hat{x}} g_{0}(\hat{\tau}) \dot{\hat{x}}$

EFFECT OF THE PERTURBATION (2/10)

- The expression of $\dot{\hat{x}}$ can be drawn from the single-particle horizontal equation of motion

$$
\begin{gathered}
\dot{\hat{x}}=\frac{d}{d t}(\hat{x})=\frac{d}{d t}\left[x^{2}+\left(\frac{\dot{x}}{\dot{\varphi}_{x}}\right)^{2}\right]^{1 / 2}=F_{x} \frac{\dot{x}}{\hat{x} \dot{\varphi}_{x}^{2}} \\
\frac{\dot{x}}{\hat{x} \dot{\varphi}_{x}}=-\sin \left(\varphi_{x}\right) \\
\Longrightarrow \quad \dot{\hat{x}}=-\frac{\sin \left(\varphi_{x}\right)}{\dot{\varphi}_{x}} F_{x}
\end{gathered}
$$

EFFECT OF THE PERTURBATION (3/10)

- Using the definition of the transverse impedance, the force can be written

$$
\begin{gathered}
F_{x}=-\frac{j e \beta \pi I_{b}}{R \gamma m_{0}} \sum_{p=-\infty}^{p=+\infty} Z_{x}(p) \sigma_{x, m}(p) e^{-j p \Omega_{0}(t-\tau)} e^{j\left[\left(p+Q_{x 0}\right) \Omega_{0}+\omega_{c}\right] t} \\
\left(p+Q_{x 0}\right) \Omega_{0}+\omega_{c}
\end{gathered}
$$

- Developing the $\sin \left(\varphi_{x}\right)$ into exponential functions, keeping then only the slowly varying term, making the approximation $\dot{\varphi}_{x} \approx Q_{x 0} \Omega_{0}$ and using the relations $J_{-m}(-x)=J_{m}(x)$ and one from the longitudinal course, yields

$$
\dot{\hat{x}}=-\frac{e \pi I_{b}}{2 \gamma m_{0} c Q_{x 0}} \sum_{p, m=-\infty}^{p, m=+\infty} Z_{x}(p) \sigma_{x, m}(p) j^{m} J_{m, x}(p, \hat{\tau}) e^{-j\left(\varphi_{x 0}+m \psi_{0}\right)} e^{j \Delta \omega_{c m}^{x} t}
$$

EFFECT OF THE PERTURBATION (4/10)

$\Rightarrow \quad$ For each mode m, one has
$j h_{m}(\hat{x}, \hat{\tau}) \Delta \omega_{c m}^{x}=\frac{e \pi I_{b}}{2 \gamma m_{0} c Q_{x 0}} \sum_{p=-\infty}^{p=+\infty} Z_{x}(p) \sigma_{x}(p) j^{m} J_{m, x}(p, \hat{\tau}) \frac{d f_{0}(\hat{x})}{d \hat{x}} g_{0}(\hat{\tau})$
with

$$
\sigma_{x}(p)=\sum_{m} \sigma_{x, m}(p)
$$

Multiplying both sides by \hat{x}^{2} and integrating over $\hat{x} \quad \Longrightarrow$

$$
\begin{array}{r}
j \Delta \omega_{c m}^{x} \int_{\hat{x}=0}^{\hat{x}=+\infty} h_{m}(\hat{x}, \hat{\tau}) \hat{x}^{2} d \hat{x}=-\frac{e I_{b}}{2 \gamma m_{0} c Q_{x 0}} \sum_{p=-\infty}^{p=+\infty} Z_{x}(p) \sigma_{x}(p) j^{m} J_{m, x}(p, \hat{\tau}) g_{0}(\hat{\tau}) \\
\text { using the relation } \int_{\hat{x}=0}^{\hat{x}=+\infty} \frac{d f_{0}(\hat{x})}{d \hat{x}} \hat{x}^{2} d \hat{x}=-2 \int_{\hat{x}=0}^{\hat{x}=+\infty} f_{0}(\hat{x}) \hat{x} d \hat{x}=-\frac{1}{\pi}
\end{array}
$$

EFFECT OF THE PERTURBATION (5/10)

- Note that the horizontal stationary distribution disappeared and only the longitudinal one remains => Only the beam center of mass is important (in our case). This should also be valid for the perturbation, which can be written

$$
\int_{\hat{x}=0}^{\hat{x}=+\infty} h_{m}(\hat{x}, \hat{\tau}) \hat{x}^{2} d \hat{x}=g_{0}(\hat{\tau}) \hat{X}_{m}(\hat{\tau})
$$

Averaged peak betatron amplitude

\Longrightarrow Final form of the equation of coherent motion of a single bunch:

EFFECT OF THE PERTURBATION (6/10)

$$
\text { with } \begin{aligned}
\sigma_{x, m}(p) & =j^{-m} \int_{\hat{x}=0}^{\hat{x}=+\infty} \int_{\hat{\tau}=0}^{\hat{t}=+\infty} h_{m}(\hat{x}, \hat{\tau}) J_{m, x}(p, \hat{\tau}) \hat{x}^{2} d \hat{x} \hat{\tau} d \hat{\tau} \\
& =j^{-m} \int_{\hat{\tau}=0}^{\hat{\tau}=+\infty} J_{m, x}(p, \hat{\tau}) g_{0}(\hat{\tau}) \hat{x}_{m}(\hat{\tau}) \hat{\tau} d \hat{\tau}
\end{aligned}
$$

- Coherent modes of oscillation at low intensity (i.e. considering only a single mode m)

$$
j \Delta \omega_{c m}^{x} \hat{x}_{m}(\hat{\tau})=-\frac{e I_{b}}{2 \gamma m_{0} c Q_{x 0}} \sum_{p=-\infty}^{p=+\infty} Z_{x}(p) \sigma_{x, m}(p) j^{m} J_{m, x}(p, \hat{\tau})
$$

Multiplying both sides by $j^{-m} J_{m, x}(l, \hat{\tau}) g_{0}(\hat{\tau}) \hat{\tau}$ and integrating over $\hat{\tau}$

EFFECT OF THE PERTURBATION (7/10)

$$
\Rightarrow \quad \Delta \omega_{c m}^{x} \sigma_{x, m}(l)=\sum_{p=-\infty}^{p=+\infty} K_{l p}^{x, m} \sigma_{x, m}(p)
$$

$$
K_{l p}^{x, m}=\frac{j e I_{b}}{2 \gamma m_{0} c Q_{x 0}} Z_{x}(p) \int_{\tau=0}^{\hat{i}=+\infty} J_{m, x}(l, \hat{\tau}) J_{m, x}(p, \hat{\tau}) g_{0}(\hat{\tau}) \hat{\tau} d \hat{\tau}
$$

- Following the same procedure as for the longitudinal plane, the horizontal coherent oscillations (over several turns) of a "water-bag" bunch interacting with a constant inductive impedance are shown in the next slides for the first head-tail modes (Note that the index x has been removed for clarity)

$$
g_{0}(\hat{\tau})=4 /\left(\pi \tau_{b}^{2}\right)
$$

EFFECT OF THE PERTURBATION (8/10)

EFFECT OF THE PERTURBATION (9/10)

Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 3rd, 2009

EFFECT OF THE PERTURBATION (10/10)

Observation in the CERN PSB in ~ 1974
(J. Gareyte and F. Sacherer)

Observation in the CERN PS in 1999

(Laclare's) theory

