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TRANSVERSE INSTABILITIES 
E. Métral (CERN) 

Time (20 ns/div) 

  The purpose of this course is to explain (theoretically) such 
pictures of “transverse (single-bunch) instability” 

Observation in the CERN PS in 1999 
Observation in the CERN PSB in ~1974 

(J. Gareyte and F. Sacherer) 

Following Laclare  
(and longitudinal) 
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SINGLE PARTICLE TRANSVERSE MOTION (1/3) 

  A purely linear synchrotron oscillation around the synchronous particle is 
assumed (with no coherent oscillations) 

€ 

˙ ̇ τ +ωs
2 τ = 0

€ 

τ = ˆ τ cos ωs t +ψ0( )

€ 

x = ˆ x cos ϕx t( )[ ]

  For the transverse betatron oscillation, the equation of unperturbed 
motion, e.g. in the horizontal plane, is written as 

  The horizontal betatron frequency is given by 

€ 

x 2 +
˙ x 2

˙ ϕ x
2 = ˆ x 2

€ 

˙ ϕ x =Qx Ω

with 

€ 

η = −
ΔΩ /Ω0

Δp / p0

=
˙ τ 

Δp / p0

€ 

ξx =
ΔQx /Qx0

Δp / p0

Chromaticity 
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SINGLE PARTICLE TRANSVERSE MOTION (2/3) 

€ 

Qx p( ) =Qx0 1+ ξx
Δp
p0

 

 
 

 

 
 

€ 

⇒

€ 

ϕx =Qx0 Ω0 t − τ( ) +ωξ x
τ + ϕx0

€ 

ωξ x
= Qx0Ω0

ξx
η

Horiz. chromatic 
frequency 

€ 

Ω p( ) =Ω0 1−η Δp
p0

 

 
 

 

 
 

€ 

⇒

€ 

˙ ϕ x =Qx Ω ≈Qx0 Ω0 1− ˙ τ 1− ξx
η

 

 
 

 

 
 

 

 
 

 

 
 

and 
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SINGLE PARTICLE TRANSVERSE MOTION (3/3) 

  In the presence of electromagnetic fields induced by the beam, the 
equation of motion writes 

  

€ 

˙ ̇ x −
˙ ̇ ϕ x
˙ ϕ x

˙ x + ˙ ϕ x
2 x = Fx =

e
γ m0

 
E +  v ×

 
B [ ] x

t ,ϑ =Ω0 t − τ( )( )

When following the particle along its trajectory 

  In the absence of perturbation, the horizontal coordinate satisfies 

€ 

˙ ̇ x −
˙ ̇ ϕ x
˙ ϕ x

˙ x + ˙ ϕ x
2 x = 0
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SINGLE PARTICLE TRANSVERSE SIGNAL (1/2) 

  The horizontal signal induced at a perfect PU electrode (infinite bandwidth) 
at angular position       in the ring by the off-centered test particle is given by 

€ 

sx t ,ϑ( ) = e ˆ x cos ϕx( ) δ t − τ − ϑ
Ω0

−
2kπ
Ω0

 

 
 

 

 
 

k = −∞

k = +∞

∑
€ 

ϑ

€ 

sx t ,ϑ( ) = sz t ,ϑ( ) x t( ) = sz t ,ϑ( ) ˆ x cos ϕx( )

€ 

⇒

  Developing                  into exponential functions and using relations given 
in the longitudinal course, yields  

€ 

cos ϕx( )

€ 

sx t ,ϑ( ) =
eΩ0

4π
ˆ x e j Qx 0 Ω0 t + ϕ x 0( ) j −m Jm, x p, ˆ τ ( ) e j ω pm t + mψ0 − pϑ[ ]

p , m = −∞

p , m = +∞

∑

+ c. c.

€ 

ω pm = pΩ0 + mωsComplex conjugate 
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SINGLE PARTICLE TRANSVERSE SIGNAL (2/2) 

with 

€ 

Jm, x p, ˆ τ ( ) = Jm p +Qx0( ) Ω0 −ωξ x[ ] ˆ τ { }

€ 

⇒

€ 

sx ω ,ϑ( ) =
eΩ0

4π
ˆ x e jϕ x 0

j−m Jm, x p, ˆ τ ( ) δ ω − p + Qx 0( )Ω0 + mωs[ ]{ } e j mψ0 − pϑ( )

p , m = −∞

p , m = +∞

∑ + c.c.

  The spectrum is a line spectrum at frequencies 

€ 

p + Qx0( )Ω0 + mωs

  Around every betatron line              , there is an infinite number of 
synchrotron satellites m 

  The spectral amplitude of the mth satellite is given by   

  The spectrum is centered at the chromatic frequency 
€ 

p + Qx0( )Ω0

€ 

Jm, x p, ˆ τ ( )

€ 

ωξ x
= Qx0Ω0

ξx
η
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STATIONARY DISTRIBUTION (1/2) 

  In the absence of perturbation,       and       are constants of the motion 

  Therefore, the stationary distribution is a function of the peak amplitudes 
only 

  No correlation between horizontal and longitudinal planes is assumed 
and the stationary part is thus written as the product of 2 stationary 
distributions, one for the longitudinal phase space and one for the 
horizontal one 

€ 

ˆ x 

€ 

ˆ τ 

€ 

Ψx0 ˆ x , ˆ τ ( )

€ 

Ψx0 ˆ x , ˆ τ ( ) = f0 ˆ x ( ) g0 ˆ τ ( )

€ 

g0 ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫ =
1

2π

€ 

f0 ˆ x ( ) ˆ x dˆ x 
ˆ x = 0

ˆ x = +∞

∫ =
1

2π
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STATIONARY DISTRIBUTION (2/2) 

  Since on average, the beam center of mass is on axis, the horizontal 
signal induced by the stationary distribution is null 

€ 

Sx0 t ,ϑ( ) = Nb
ˆ x = 0

ˆ x = +∞

∫
ϕ x 0 = 0

ϕ x 0 = 2π

∫
ˆ τ = 0

ˆ τ = +∞

∫
ψ0 = 0

ψ0 = 2π

∫ f0 ˆ x ( ) g0 ˆ τ ( ) sx t ,ϑ( ) ˆ x ˆ τ dˆ x d ˆ τ dϕx 0 dψ0

= 0



Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 3rd, 2009                                                                                                   /22 9 

  In order to get some dipolar fields, density perturbations          that 
describe beam center-of-mass displacements along the bunch are 
assumed 

  The mathematical form of the perturbations is suggested by the single-
particle signal 

PERTURBATION DISTRIBUTION (1/3) 

€ 

ΔΨx

€ 

sx t ,ϑ( ) =
eΩ0

4π
ˆ x j −m Jm, x p, ˆ τ ( ) e j ϕ x 0 + mψ0( ) e − j pϑ e j p + Qx 0( )Ω0 + mω s[ ] t

p , m = −∞

p , m = +∞

∑

+ c.c.

  Low-intensity 

€ 

Δωcm
x =ωc − mωs <<ωs

Coherent betatron 
frequency shift to be determined 

€ 

ΔΨx = hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δω cm
x t
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PERTURBATION DISTRIBUTION (2/3) 

  In the time domain, the horizontal signal takes the form (for a single value 
m)  

Fourier   transform 

€ 

σ x, m p( ) = j −m

ˆ x = 0

ˆ x = +∞

∫
ˆ τ = 0

ˆ τ = +∞

∫ hm ˆ x , ˆ τ ( ) Jm, x p, ˆ τ ( ) ˆ x 2 dˆ x ˆ τ d ˆ τ with 
€ 

Sx ω ,ϑ( ) = 2 π 2 Ib e− j pϑ σ x,m p( ) δ ω − p + Qx0( )Ω0 +ωc[ ]{ }
p = −∞

p= +∞

∑
€ 

Sx t ,ϑ( ) = 2 π 2 Ib e− j pϑ σ x,m p( ) e j p +Qx 0( )Ω0 +ω c[ ] t

p = −∞

p= +∞

∑
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PERTURBATION DISTRIBUTION (3/3) 

  High-intensity 

€ 

ΔΨx = hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δω cm
x t

m
∑
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TRANSVERSE IMPEDANCE 

  

€ 

 
E +  v ×

 
B [ ] x

t ,ϑ( ) =
− jβ
2π R

Zx ω( ) Sx ω ,ϑ( ) e jω t dω∫

All the properties of the electromagnetic  
response of a given machine to a passing particle is 

gathered into the transverse impedance (complex 
function => in Ω / m) 



Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 3rd, 2009                                                                                                   /22 13 

EFFECT OF THE PERTURBATION (1/10) 

€ 

Ψx ˆ x , ϕx 0 , ˆ τ , ψ0 , t( ) = Ψx0 + ΔΨx

     Vlasov equation  

€ 

∂Ψx

∂ t
+
∂Ψx

∂ ˆ x 
ˆ ˙ x + ∂Ψx

∂ϕx0

˙ ϕ x 0 +
∂Ψx

∂ ˆ τ 
ˆ ˙ τ + ∂Ψx

∂ψ0

˙ ψ 0 = 0

€ 

j hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) Δωcm
x e j Δωcm

x t

m
∑ = −

df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( ) ˆ ˙ x 

€ 

⇒

€ 

Ψx = f0 ˆ x ( ) g0 ˆ τ ( ) + hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δωcm
x t

m
∑

€ 

⇒ Linearized Vlasov equation 

€ 

∂Ψx

∂ t
= −

df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( ) ˆ ˙ x 

€ 

⇒
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EFFECT OF THE PERTURBATION (2/10) 

  The expression of    can be drawn from the single-particle horizontal 
equation of motion  

€ 

ˆ ˙ x 

€ 

ˆ ˙ x = d
d t

ˆ x ( ) =
d
d t

x 2 +
˙ x 
˙ ϕ x

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

1/ 2

= Fx
˙ x 

ˆ x ˙ ϕ x
2

€ 

⇒€ 

˙ x 
ˆ x ˙ ϕ x

= − sin ϕx( )

€ 

ˆ ˙ x = −
sin ϕx( )

˙ ϕ x
Fx
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EFFECT OF THE PERTURBATION (3/10) 

€ 

Fx = −
j e β π Ib
R γ m0

Zx p( )σ x,m p( ) e − j pΩ0 t − τ( ) e j p +Qx 0( )Ω0 +ω c[ ] t

p = −∞

p= +∞

∑

  Using the definition of the transverse impedance, the force can be written 

€ 

p + Qx0( )Ω0 +ωc

  Developing the                into exponential functions, keeping then only 
the slowly varying term, making the approximation                     and 
using the relations                             and one from the longitudinal 
course, yields  

€ 

sin ϕx( )

€ 

˙ ϕ x ≈Qx0 Ω0

€ 

J −m − x( ) = Jm x( )

€ 

ˆ ˙ x = − e π Ib

2 γ m0 c Qx0

Zx p( )σ x,m p( ) jm Jm, x p, ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δωcm
x t

p , m = −∞

p , m = +∞

∑
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EFFECT OF THE PERTURBATION (4/10) 

€ 

⇒ For each mode m, one has 

€ 

j hm ˆ x , ˆ τ ( ) Δωcm
x =

e π Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑ df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( )

€ 

σ x p( ) = σ x,m p( )
m
∑with 

  Spectrum amplitude  
  at frequency               

€ 

p + Qx0( )Ω0 +ωc

Multiplying both sides by          and integrating over  

€ 

ˆ x 2

€ 

ˆ x 

€ 

⇒

€ 

j Δωcm
x

ˆ x = 0

ˆ x = +∞

∫ hm ˆ x , ˆ τ ( ) ˆ x 2 dˆ x = − e Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑ g0 ˆ τ ( )

using the relation 

€ 

df0 ˆ x ( )
dˆ x 

ˆ x 2 dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = − 2 f0 ˆ x ( ) ˆ x dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = −
1
π
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EFFECT OF THE PERTURBATION (5/10) 

€ 

hm ˆ x , ˆ τ ( ) ˆ x 2 dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = g0 ˆ τ ( ) ˆ x m ˆ τ ( )

Averaged peak betatron amplitude 

  Note that the horizontal stationary distribution disappeared and only the 
longitudinal one remains => Only the beam center of mass is important 
(in our case). This should also be valid for the perturbation, which can be 
written 

€ 

⇒ Final form of the equation of coherent motion of a single bunch: 

€ 

j Δωcm
x ˆ x m ˆ τ ( ) = −

e Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑

  Contribution from all 
the modes m 

€ 

Δωcm
x =ωc − mωs
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EFFECT OF THE PERTURBATION (6/10) 

with 

€ 

σ x, m p( ) = j −m

ˆ x = 0

ˆ x = +∞

∫
ˆ τ = 0

ˆ τ = +∞

∫ hm ˆ x , ˆ τ ( ) Jm, x p, ˆ τ ( ) ˆ x 2 dˆ x ˆ τ d ˆ τ 

= j −m

ˆ τ = 0

ˆ τ = +∞

∫ Jm, x p, ˆ τ ( ) g0 ˆ τ ( ) ˆ x m ˆ τ ( ) ˆ τ d ˆ τ 

  Coherent modes of oscillation at low intensity (i.e. considering only a 
single mode m) 

€ 

j Δωcm
x ˆ x m ˆ τ ( ) = −

e Ib

2 γ m0 c Qx0

Zx p( )σ x, m p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑

Multiplying both sides by                                             and integrating over  

€ 

j −m Jm, x l, ˆ τ ( ) g0 ˆ τ ( ) ˆ τ 

€ 

ˆ τ 
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EFFECT OF THE PERTURBATION (7/10) 

€ 

Δωcm
x σ x,m l( ) = Klp

x,m σ x,m p( )
p= −∞

p= +∞

∑

€ 

Klp
x,m =

j e Ib
2 γ m0 c Qx0

Zx p( ) Jm, x l, ˆ τ ( )
ˆ τ = 0

ˆ τ = +∞

∫ Jm, x p, ˆ τ ( ) g0 ˆ τ ( ) ˆ τ d ˆ τ 

  Following the same procedure as for the longitudinal plane, the horizontal 
coherent oscillations (over several turns) of a “water-bag” bunch 
interacting with a constant inductive impedance are shown in the next 
slides for the first head-tail modes (Note that the index x has been 
removed for clarity) 

€ 

g0 ˆ τ ( ) = 4 / π τ b
2( )

€ 

⇒
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EFFECT OF THE PERTURBATION (8/10) 

DIPOLE QUADRUPOLE 

€ 

fξ x =
ξx
η
Qx0 f0

€ 

χx =ωξ x
τ b =10

€ 

ωξ x
= 0

€ 

Qx0 = x.13
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EFFECT OF THE PERTURBATION (9/10) 
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EFFECT OF THE PERTURBATION (10/10) 

(Laclare’s) theory 


