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LONGITUDINAL INSTABILITIES 
E. Métral (CERN) 

[ns] 
Courtesy of Giulia Papotti 

  The purpose of this course is to explain (theoretically) such 
pictures of “longitudinal (single-bunch) instability” 

Observations in the CERN SPS in 2007 

Following Laclare 
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SINGLE PARTICLE LONGITUDINAL MOTION (1/2) 

€ 

˙ ̇ τ +ωs0
2 τ = 0

€ 

τ = ˆ τ cos ωs0 t +ψ0( )

€ 

ωs0 =Ω0 −
e ˆ V RF h η cosφs0

2π β 2 Etotal

 

 
 

 

 
 

1/ 2

€ 

p0 c = β Etotal

€ 

e = elementary charge

€ 

R = average machine radius

€ 

p0 = momentum of the synch. particle

€ 

ˆ V RF = peak RF voltage 

€ 

h = RF harmonic number 
€ 

RΩ0 = v = β c

€ 

η =α p −
1
γ 2 = −

Δf / f0

Δp / p0

= slip factor

€ 

α p =
1
γ t

2 = mom. comp. factor

€ 

c = speed of light

Time interval between the 
passage of the synchronous 
particle and the test particle, for 
a fixed observer at azimuthal 
position  

€ 

ϑ

€ 

φs0 = RF phase of the synch. particle
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SINGLE PARTICLE LONGITUDINAL MOTION (2/2) 

  Canonical conjugate variables 

€ 

τ , ˙ τ = dτ
dt

 

 
 

 

 
 

€ 

˙ τ = dτ
dt

= −
df
f0

=η
dp
p0

€ 

τ 2 +
˙ τ 2

ωs0
2 = ˆ τ 2

  Linear matching condition 

€ 

τ b = 2 ˆ τ max

  Effect of the (beam-induced) electromagnetic fields 

  

€ 

˙ ̇ τ +ωs0
2 τ =

η
p0

dp
dt

=
η e
p0

 
E +  v ×

 
B [ ]z

t ,ϑ =Ω0 t − τ( )( )
€ 

˙ τ =η p − p0

p0

€ 

⇒

When following the particle along its trajectory 

€ 

ωs0 =
2 η

Δp
p0

τ b
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SINGLE PARTICLE LONGITUDINAL SIGNAL (1/3) 

  At time           , the synchronous particle starts from            and reaches 
the Pick-Up (PU) electrode (assuming infinite bandwidth) at times           

€ 

t = 0

€ 

ϑ = 0

€ 

tk
0

€ 

Ω0 tk
0 =ϑ + 2kπ, −∞ ≤ k ≤ +∞

  The test particle is delayed by     . It goes through the electrode at times 

€ 

τ

€ 

tk

€ 

tk = tk
0 + τ

  The current signal induced by the test particle is a series of impulses 
delivered on each passage 

€ 

sz t,ϑ( ) = e δ t − τ − ϑ
Ω0

−
2kπ
Ω0

 

 
 

 

 
 

k= −∞

k= +∞

∑

Dirac function 
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SINGLE PARTICLE LONGITUDINAL SIGNAL (2/3) 

  Using the relations  

€ 

δ u − 2kπ
Ω0

 

 
 

 

 
 

k= −∞

k= +∞

∑ =
Ω0

2π
e j pΩ0 u

p= −∞

p= +∞

∑

€ 

e− j u ˆ τ cos ω s 0 t + ψ0( ) = j−m Jm u ˆ τ ( ) e j m ω s 0 t + ψ0( )

m= −∞

m= +∞

∑

Bessel function of mth order 

€ 

⇒

€ 

sz t,ϑ( ) =
eΩ0

2π
j −m Jm pΩ0 ˆ τ ( ) e j ω pm t− pϑ +mψ0( )

p ,m= −∞

p ,m= +∞

∑

€ 

ω pm = pΩ0 + mωs0

€ 

sz ω,ϑ( ) =
eΩ0

2π
j −m Jm pΩ0 ˆ τ ( ) e− j pϑ −mψ0( )δ ω −ω pm( )

p ,m= −∞

p ,m= +∞

∑

Fourier   transform 
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SINGLE PARTICLE LONGITUDINAL SIGNAL (3/3) 

€ 

ω pm = pΩ0 + mωs0

  The single particle spectrum is a line spectrum at frequencies 

€ 

pΩ0  Around every harmonic of the revolution frequency         , there is an 
infinite number of synchrotron satellites m 

  The spectral amplitude of the mth satellite is given by   

€ 

Jm pΩ0 ˆ τ ( )

  The spectrum is centered at the origin 

  Because the argument of the Bessel functions is proportional to     , the 
width of the spectrum behaves like 

€ 

ˆ τ 

€ 

ˆ τ −1



Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 2nd, 2009                                                                                                  /35 7 

DISTRIBUTION OF PARTICLES (1/2) 

€ 

Ψ ˆ τ ,ψ0 , t( ) = particle density in longitudinal phase space

  Signal induced (at the PU electrode) by the whole beam 

€ 

Sz t ,ϑ( ) = Nb
ˆ τ = 0

ˆ τ = +∞

∫
ψ0 = 0

ψ0 = 2π

∫ Ψ ˆ τ ,ψ0 , t( ) sz t,ϑ( ) ˆ τ d ˆ τ dψ0

Number of particles per bunch 

  Canonically conjugated variables derive from a Hamiltonian  
by the canonical equations  

€ 

Η q, p, t( )

€ 

˙ q =
∂Η q, p, t( )

∂ p

€ 

˙ p = −
∂Η q, p, t( )

∂q
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DISTRIBUTION OF PARTICLES (2/2) 

  According to the Liouville’s theorem, the particles, in a non-dissipative 
system of forces, move like an incompressible fluid in phase space. The 
constancy of the phase space density                            is expressed by 
the equation 

where the total differentiation indicates that one follows the particle while 
measuring the density of its immediate neighborhood. This equation, 
sometimes referred to as the Liouville’s theorem, states that the local 
particle density does not vary with time when following the motion in 
canonical variables    

€ 

Ψ q, p, t( )

€ 

dΨ q, p, t( )
d t

= 0

€ 

∂Ψ q, p, t( )
∂ t

+ ˙ q 
∂Ψ q, p, t( )

∂q
+ ˙ p 

∂Ψ q, p, t( )
∂ p

= 0

  As seen by a stationary observer (like a PU electrode) which does not 
follow the particle => Vlasov equation 
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STATIONARY DISTRIBUTION (1/5) 

  In the case of a harmonic oscillator 

€ 

Η =ω
q2 + p2

2

€ 

˙ q = ∂H
∂ p

= pω

€ 

˙ p = − ∂H
∂q

= − qω

€ 

˙ ̇ q +ω 2 q = 0

€ 

q = r cosφ

€ 

p = − r sinφ

€ 

∂Ψ
∂ t

+ ˙ r ∂Ψ
∂r

+ ˙ φ 
∂Ψ
∂φ

= 0

  Going to polar coordinates € 

⇒

€ 

⇒
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€ 

˙ r = 0  As r is a constant of motion    

€ 

∂Ψ
∂ t

+ω
∂Ψ
∂φ

= 0

€ 

φ =ω t

€ 

∂Ψ
∂ t

= −ω
∂Ψ
∂φ

= −
∂Ψ
∂ t

€ 

Ψ r( )

A stationary distribution is any function of r, or equivalently any function of 
the Hamiltonian H  

€ 

∂Ψ
∂ t

=
∂Ψ
∂φ

= 0€ 

⇒

€ 

⇒ with 

€ 

⇒

€ 

⇒

€ 

⇒

STATIONARY DISTRIBUTION (2/5) 
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€ 

q = τ

€ 

p = ˙ τ 

€ 

r = ˆ τ 

€ 

φ =ψ0
  In our case 

€ 

Ψ0 ˆ τ ,ψ0 , t( ) = g0 ˆ τ ( )

€ 

⇒

€ 

Sz0 ω ,ϑ( ) = 2π Ib σ 0 p( ) δ ω − pΩ0( ) e− j pϑ
p= −∞

p= +∞

∑

€ 

σ 0 p( ) = J0 pΩ0 ˆ τ ( ) g0 ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫with 

Amplitude of 
 the spectrum 

€ 

Ib = Nb eΩ0 / 2π

STATIONARY DISTRIBUTION (3/5) 
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  Let’s assume a parabolic amplitude density 

€ 

g0 ˆ z ( ) =
2

π
τ b

2
 

 
 

 

 
 

2 1− ˆ z 2( )

€ 

ˆ z ≡ ˆ τ / τ b / 2( )

  The line density               is the projection of the distribution                on the       
     axis 

€ 

g0 ˆ τ ( )

€ 

λ τ( )

€ 

τ

€ 

λ τ( ) = g0 ˆ τ ( ) d
˙ τ 

ωs0
∫

€ 

⇒

€ 

λ z( ) =
8

3 π τ b
2

 

 
 

 

 
 

1− z2( )
3 / 2

€ 

λ τ( ) dτ∫ =1

€ 

z ≡ τ / τ b / 2( )

STATIONARY DISTRIBUTION (4/5) 
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€ 

⇒

€ 

σ0 p( ) =
4

π p π B( )2
J2 p π B( )

and 

€ 

Sz0 ω ,ϑ( ) = 8 Ib δ ω − pΩ0( ) e− j pϑ
J2 p π B( )
p π B( )2p= −∞

p= +∞

∑
€ 

B = τ b Ω0 / 2π

Bunching factor 

STATIONARY DISTRIBUTION (5/5) 

  Using the relations  

€ 

J0 u'( ) u' du'
u'= 0

u'= u

∫ = u J1 u( )

€ 

x 3 J0 x( ) dx∫ = x 2 2 J2 x( ) − x J3 x( )[ ]

€ 

Jn−1 x( ) + Jn +1 x( ) =
2 n
x
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LONGITUDINAL IMPEDANCE 

  

€ 

2 π R
 
E +  v ×

 
B [ ]z

t ,ϑ( ) = − Zl ω( ) Sz ω ,ϑ( ) e jω t dω
ω = −∞

ω = +∞

∫

All the properties of the electromagnetic  
response of a given machine to a passing particle is 
gathered into the impedance (complex function => 

in Ω) 
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EFFECT OF THE STATIONARY DISTRIBUTION (1/9) 

  

€ 

˙ ̇ τ +ωs0
2 τ = F0 =

η e
p0

 
E +  v ×

 
B [ ]z0

t ,ϑ =Ω0 t − τ( )( )

  

€ 

 
E +  v ×

 
B [ ]z0

t ,ϑ =Ω0 t − τ( )( ) = −
1

2 π R
Zl ω( ) Sz0 ω ,ϑ =Ω0 t − τ( )( ) e jω t dω

ω = −∞

ω = +∞

∫

€ 

⇒

€ 

˙ ̇ τ +ωs0
2 τ = F0 =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) e j pΩ0 τ

p = −∞

p = +∞

∑

€ 

pΩ0
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EFFECT OF THE STATIONARY DISTRIBUTION (2/9) 

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) 1+ j pΩ0 τ −
pΩ0 τ( )2

2
+ ...

 

 
 
 

 

 
 
 p = −∞

p = +∞

∑

  Expanding the exponential in series (for small amplitudes) 

Synchronous phase shift 

Incoherent frequency shift 
(potential-well distortion) 

Nonlinear terms introducing some 
synchrotron frequency spread 
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EFFECT OF THE STATIONARY DISTRIBUTION (3/9) 

  Synchronous phase shift 

€ 

τ = tp − ts0

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑

€ 

⇒

€ 

˙ ̇ t p +ωs0
2 t p =ωs0

2 ts0 +
2 π Ib ωs0

2

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑
€ 

˙ ̇ t s0 = 0

€ 

⇒

Test particle Synchronous particle 

with 

€ 

˙ ̇ t p +ωs0
2 t p =ωs0

2 ts

€ 

Δts = ts − ts0 =
2 π Ib

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑



Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 2nd, 2009                                                                                                  /35 18 

EFFECT OF THE STATIONARY DISTRIBUTION (4/9) 

€ 

φ =ωRF t

€ 

ωRF = h Ω0

€ 

φs =ωRF ts

€ 

Δφs = φs − φs0 =ωRF Δts

€ 

⇒

€ 

Δφs = φs − φs0 =
2 π Ib

ˆ V RF cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑

Can be used to probe  
the resistive part of the 
longitudinal impedance 

Only for the small 
amplitudes. For the power 
loss of the whole bunch an 

averaging is needed! 
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EFFECT OF THE STATIONARY DISTRIBUTION (5/9) 

  Incoherent synchrotron frequency shift (potential-well distortion) 

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) j pΩ0 τ
p = −∞

p = +∞

∑

€ 

⇒

€ 

˙ ̇ τ +ωs
2 τ = 0

with 

€ 

ωs
2 =ωs0

2 1− 2 π Ib
ˆ V RF h cosφs0

j Zl p( ) pσ 0 p( )
p = −∞

p = +∞

∑
 

 
 
 

 

 
 
 

  If the impedance is constant (in the frequency range of interest) 

€ 

ωs
2 =ωs0

2 1− 2 π Ib
ˆ V RF h cosφs0

j
Zl p( )

p
 

 
 

 

 
 

const

p2 σ 0 p( )
p = −∞

p = +∞

∑
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EFFECT OF THE STATIONARY DISTRIBUTION (6/9) 

€ 

J2 p x( )
p= −∞

p= +∞

∑ =
2
x

  Using the relation  

€ 

⇒

€ 

p2 σ 0 p( )
p= −∞

p= +∞

∑ =
8

π 4 B3

€ 

⇒

€ 

Δ =
ωs

2 −ωs0
2

ωs0
2 = −

16 Ib

π 3 B3 ˆ V RF h cosφs0

j
Zl p( )

p
 

 
 

 

 
 

const

€ 

ˆ V T = ˆ V RF
ωs

ωs0

 

 
 

 

 
 

2

The change in the RF slope corresponds to the effective (total) voltage 

For the parabolic 
amplitude density 
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EFFECT OF THE STATIONARY DISTRIBUTION (7/9) 

  Bunch lengthening / shortening (as a consequence of the shifts of the 
synchronous phase and incoherent frequency) 

  Electrons 
The equilibrium momentum spread  
is imposed by synchrotron radiation 

€ 

Δp
p0

=
Δp
p0

 

 
 

 

 
 
0

€ 

⇒

€ 

B
B0

=
ωs0

ωs

cosφs0
cosφs

Neglecting the (usually small) synchronous phase shift 

€ 

B
B0

=
B
B0

 

 
 

 

 
 

3

+ Δ 0 with 

€ 

Δ 0 = ΔB = B0

€ 

⇒
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EFFECT OF THE STATIONARY DISTRIBUTION (8/9) 

  Protons 

The longitudinal emittance 
is invariant 

€ 

τ b
Δp
p0

= τ b0
Δp
p0

 

 
 

 

 
 
0

€ 

⇒

€ 

B
B0

 

 
 

 

 
 

2

=
ωs0

ωs

cosφs0
cosφs

Again, neglecting the (usually small) synchronous phase shift 

€ 

B
B0

 

 
 

 

 
 

−1

=
B
B0

 

 
 

 

 
 

3

+ Δ 0

€ 

⇒
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EFFECT OF THE STATIONARY DISTRIBUTION (9/9) 

  General formula 

€ 

B
B0

 

 
 

 

 
 

±1

=
B
B0

 

 
 

 

 
 

3

+ Δ 0

+ for electrons  
and – for protons 

  Conclusion of the effect of the stationary distribution: New fixed point 

€ 

ˆ V RF ⇒ ˆ V T Ib( )
  Potential-well distortion 

  Synchronous phase shift 
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€ 

ΔΨ ˆ τ ,ψ0 , t( ) = gm ˆ τ ( ) e − j mψ0 e j Δωcm t

  The form is suggested by the single-particle signal 

€ 

sz t,ϑ( ) =
eΩ0

2π
j −m Jm pΩ0 ˆ τ ( ) e j ω pm t− pϑ +mψ0( )

p ,m= −∞

p ,m= +∞

∑

€ 

m ≠ 0

€ 

Δωcm =ωc − mωs <<ωs0

PERTURBATION DISTRIBUTION (1/2) 

  Low-intensity 

Around the  
new fixed point 

Therefore, the spectral amplitude is maximum for 
satellite number m and null for the other satellites 

Coherent synchrotron  
frequency shift to be determined 
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€ 

⇒

€ 

ΔSzm ω ,ϑ( ) = 2π Ib σm p( ) δ ω − pΩ0 + mωs + Δωcm( )[ ] e− j pϑ
p= −∞

p= +∞

∑

with 

€ 

σm p( ) = j −m Jm pΩ0 ˆ τ ( ) gm ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫

Amplitude of 
 the perturbation 

spectrum 

PERTURBATION DISTRIBUTION (2/2) 

€ 

ωs =Ω0 −
e ˆ V T h η cosφs

2π β 2 Etotal

 

 
 

 

 
 

1/ 2

€ 

ΔΨ ˆ τ ,ψ0 , t( ) = gm ˆ τ ( ) e − j mψ0 e j Δωcm t

m
∑  High-intensity 
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EFFECT OF THE PERTURBATION (1/10) 

€ 

Ψ ˆ τ ,ψ0 , t( ) =Ψ0 + ΔΨ = g0 ˆ τ ( ) + gm ˆ τ ( ) e − j mψ0 e j Δωcm t

m
∑

  Vlasov equation with variables  

€ 

∂Ψ
∂ t

+
dg0

d ˆ τ 
+
∂ΔΨ
∂ ˆ τ 

 

 
 

 

 
 
d ˆ τ 
dt

+
∂ΔΨ
∂ψ0

dψ0

dt
= 0

€ 

ˆ τ ,ψ0( )

€ 

⇒ Linearized Vlasov equation 

€ 

∂Ψ
∂ t

= −
dg0

d ˆ τ 
d ˆ τ 
dt

€ 

⇒

€ 

j gm ˆ τ ( ) e − j mψ0 Δωcm e
j Δωcm t

m
∑ = −

dg0

d ˆ τ 
d ˆ τ 
dt



Elias Métral, CERN Accelerator School, Darmstadt, Germany, October 2nd, 2009                                                                                                  /35 27 

EFFECT OF THE PERTURBATION (2/10) 

€ 

d ˆ τ 
dt

=
d
dt

τ 2 +
˙ τ 2

ωs
2

 

 
  

 

 
  = −

Fc
ωs

sin ωs t +ψ0( )

with 
  

€ 

˙ ̇ τ +ωs
2 τ = Fc =

η e
p0

 
E +  v ×

 
B [ ]zc

t ,ϑ =Ω0 t − τ( )( )

€ 

Fc =
2π Ib ωs

2

Ω0
ˆ V T h cosφs

e jω c t Zl p( )
p = −∞

p = +∞

∑ e j pΩ0 τ σ p( )

€ 

⇒

€ 

σ p( ) = σm p( )
m
∑with 

  Spectrum amplitude  
at frequency               

€ 

pΩ0 +ωc
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EFFECT OF THE PERTURBATION (3/10) 

  Expanding the product                         (using previously given 
relations)  

€ 

sinψ e j pΩ0 τ

€ 

ψ =ωs t +ψ0

€ 

sinψ e j pΩ0 τ = j m e − j mψ m
pΩ0 ˆ τ 

Jm pΩ0 ˆ τ ( )
m= −∞

m= +∞

∑

€ 

⇒

€ 

j Δωcm j −m gm ˆ τ ( ) ˆ τ = 2π Ib mωs

Ω0
2 ˆ V T h cosφs

dg0

d ˆ τ 
Zl p( )

pp = −∞

p = +∞

∑ Jm pΩ0 ˆ τ ( )σ p( )

Final form of the equation of coherent motion of a single bunch: 

€ 

Δωcm =ωc − mωs
  Contribution from all 

the modes m 
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EFFECT OF THE PERTURBATION (4/10) 

  Coherent modes of oscillation at low intensity (i.e. considering only a 
single mode m) 

€ 

j Δωcm j −m gm ˆ τ ( ) ˆ τ = 2π Ib mωs

Ω0
2 ˆ V T h cosφs

dg0

d ˆ τ 
Zl p( )

pp = −∞

p = +∞

∑ Jm pΩ0 ˆ τ ( )σm p( )

Multiplying both sides by                            and integrating over  

€ 

Jm lΩ0 ˆ τ ( )

€ 

ˆ τ 

€ 

⇒

€ 

Δωcmq σmq l( ) = Klp
m σmq p( )

p= −∞

p= +∞

∑

€ 

Klp
m = −

2π Ib mωs

Ω0
2 ˆ V T h cosφs

j
Zl p( )

p
dg0

d ˆ τ 
Jm pΩ0 ˆ τ ( ) Jm l Ω0 ˆ τ ( ) d ˆ τ 

ˆ τ = 0

ˆ τ = +∞

∫
€ 

Δωcmq =ωcmq − mωs

  Twofold infinity of 
coherent modes 
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EFFECT OF THE PERTURBATION (5/10) 
  The procedure to obtain first order exact solutions, with realistic modes 

and a general interaction, thus consists of finding the eigenvalues and 
eigenvectors of the infinite complex matrix whose elements are  

  The result is an infinite number of modes          (                        ) of 
oscillation (as there are 2 degrees of freedom               ) 

  To each mode, one can associate: 

  a coherent frequency shift                                         (qth eigenvalue) 

  a coherent spectrum                                                 (qth eigenvector) 

  a perturbation distribution 

  For numerical reasons, the matrix needs to be truncated, and thus only a 
finite frequency domain is explored 

€ 

Klp
m

€ 

mq

€ 

−∞< m , q <+∞

€ 

Δωcmq =ωcmq − mωs

€ 

σmq p( )

€ 

gmq ˆ τ ( )

€ 

ˆ τ ,ψ0( )
  The imaginary part 

tells us if this mode is 
stable or not 
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EFFECT OF THE PERTURBATION (6/10) 

€ 

Smq t,ϑ( ) = Sz0 t,ϑ( ) + ΔSzmq t,ϑ( )

€ 

Sz0 t ,ϑ( ) = 2π Ib σ 0 p( ) e j pΩ0 t e− j pϑ
p= −∞

p= +∞

∑

€ 

ΔSzmq t ,ϑ( ) = 2π Ib σmq p( ) e j pΩ0 + m ω s + Δωcmq( ) t e− j pϑ
p= −∞

p= +∞

∑

  The longitudinal signal at the PU electrode is given by 

  For the case of the parabolic amplitude distribution 

€ 

g0 ˆ z ( ) =
2

π
τ b

2
 

 
 

 

 
 

2 1− ˆ z 2( )

€ 

Sz0 t ,ϑ( ) = 8 Ib e j pΩ0 t e− j pϑ
J2 p π B( )
p π B( )2p= −∞

p= +∞

∑
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EFFECT OF THE PERTURBATION (7/10) 

€ 

Klp
m =

128 Ib mωs

Ω0
2 ˆ V T h cosφs τ b

4 j
Zl p( )

p
Jm pΩ0 ˆ τ ( ) Jm l Ω0 ˆ τ ( ) ˆ τ d ˆ τ 

ˆ τ = 0

ˆ τ = +∞

∫

€ 

Jm
2 a x( ) x dx

0

X

∫ =
X 2

2
′ J m a X( )[ ] 2 +

1
2

X 2 −
m2

a2
 

 
 

 

 
 Jm

2 a X( )

€ 

x Jm a x( )
0

X

∫ Jm b x( )dx =
X

a2 − b2
aJm b X( )Jm+1 a X( ) −bJm a X( )Jm+1 b X( )[ ]

€ 

a2 ≠ b2

  Low order eigenvalues and eigenvectors of the matrix can be found 
quickly by computation, using the relations 

  The case of a constant inductive impedance is solved in the next slides, 
and the signal at the PU shown for several superimposed turns  
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EFFECT OF THE PERTURBATION (8/10) 

Signal observed  
at the PU electrode 

€ 

+τ b /2

€ 

−τ b /2

DIPOLE mode QUADRUPOLE mode 
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EFFECT OF THE PERTURBATION (9/10) 

  The spectrum of mode mq 

is peaked at 

 and extends 

€ 

fq ≈
q + 1
2 τ b

€ 

~ ± τ b
−1

€ 

q ≡ m + 2 k

€ 

0 ≤ k < + ∞

  There are q nodes on 
these “standing-wave” 
patterns   

SEXTUPOLE mode 
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EFFECT OF THE PERTURBATION (10/10) 

Observations in the CERN SPS in 2007 

(Laclare’s) theory 


