WILL PS & SPS BE READY FOR CNGS START-UP IN 2006?

E. Métral (15 + 5 min, 19 slides)

- Introduction
- CERN commitment
- Operational results of the CNGS tests in September 2004
 - PSB
 - PS
 - SPS
- Transverse emittances : comparison with 1997
- Potential problems
- Conclusion

INTRODUCTION

This talk is focused on operational issues for the re-start in 2006

 E. Shaposhnikova will address the beam dynamics issues and the more distant perspectives (effect of rebunching in the PS,...)

 ◆ The nominal 1.2 s basic period in the PS complex is assumed → M. Benedikt will talk about the 0.9 s

CERN COMMITMENT

 Fast extracted (in 2 halves) proton beam from the SPS at 400 GeV/c sent to a carbon target

 ◆ The quality of the experiments depends directly on the total number of protons sent annually onto the target ⇒ Specified flux : 4.5 10¹⁹ pot/year

4.8 10¹³ p/p initially foreseen (1997 SPS intensity record)

• 4.4 10¹³ p/p now foreseen (HIPWG \implies CERN-AB-2004-022 OP/RF)

OPERATIONAL RESULTS OF THE CNGS TESTS IN SEPT. 2004

IN THE PSB

- Linac2 : 175 mA
- New working point since 2004 : 4.17/4.23
- H1+H2 since 1998 (H5 before)
- Maximum intensity accelerated

993+1020+889+935 = 3837 10¹⁰ p/p

"Normal" operation

940+1010+835+914 ≈ 3700 10¹⁰ p/p

IN THE PS (1/5)

- What was expected before the tests?
 - No beam stability limitations
 - Limitations come from losses at extraction and machine acceptance (alignment, small vertical emittance required at injection...)
 - Several improvements made during the last years (1 to 1.4 GeV kinetic energy in 1999, working point, fast instability at transition, alignment of some equipments...)

Intensity record of 1997 (before ejection) : 3.2×10^{13} p/p

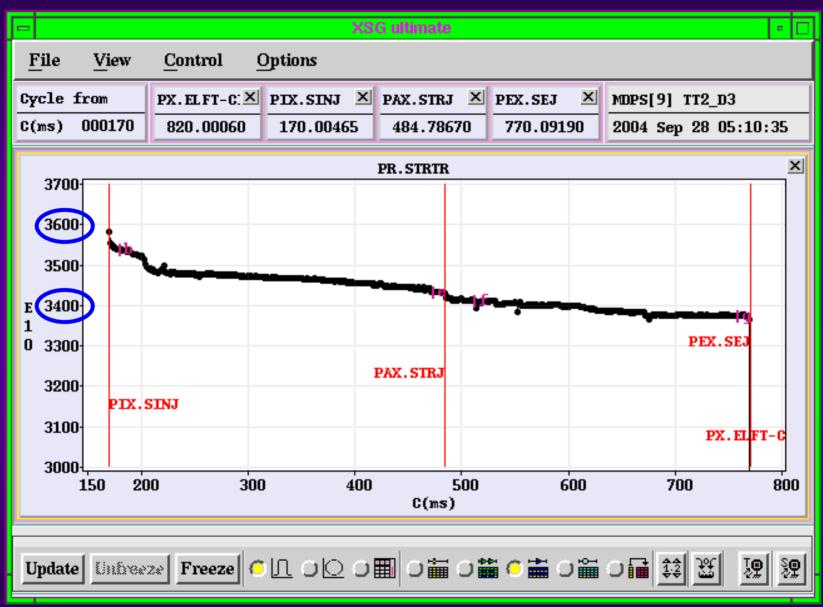
IN THE PS (2/5)

What did we obtain?

New intensity record

opdisp

MDPS 11 Sep 28 05:07:06 2004


Beam State	tate INJ User PS User			Particule	Harmonique		Destination		\boldsymbol{n}	
SPARE	PSB MDPRO	MDPS		PROTON H420			TT2_D3			
5.0			1 2 3 4 5 6 7	ring 1 acc ring 2 acc ring 3 acc ring 4 acc Sum PSB acc BTP.TRA Injected	Aquisition 982.86 1019.99 879.30 945.74 3827.89 3460.00 3571.67	Losses 368 256	Eff (%) 90.4 93.3	5	BLN 16 41 42 43 44 45	<i>INT</i> 234 159 227 175 131 116
lp (1e13)			8	Bef.Trans	3466.62	105	97.1	7	f1	
MBL 0			9	Aft.Trans	3447.07	20	99.4	8	Ľ	· · · ·
			10	Bef.Eject	3417.76	154	95.7	7		
			11	Aft.Eject	-0.57	3418	-0.0	10		
			12		3210.09	208	93.9	10		
			13		3154.50	263	92.3	10		
			14	TRA386	3231.00	187	94.5	10		

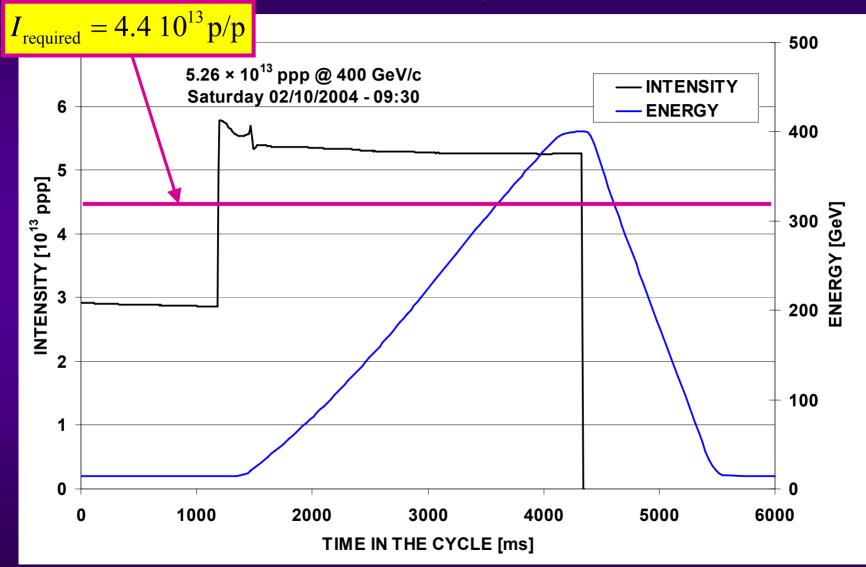
 $\implies > 3.4 \ 10^{13} \text{ p/p before ejection} \\ \implies > 3.2 \ 10^{13} \text{ p/p after ejection}$

BUT ~ 250 10¹⁰ p (7%) lost at injection !

~ 6% of losses due to the CT

IN THE PS (3/5)

IN THE PS (4/5)



IN THE PS (5/5)

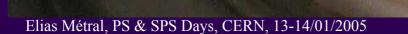
- For the 1997 intensity record
 - Higher intensity \implies Larger gap in SEH31 (24 \implies 26 mm)
 - SEH31 gap at 26 mm Increase voltage to 190 kV
- For the 2004 intensity record
 - The gap of SEH31 was not increased (better for the SEH31)
 - The beam is smaller in $H \Longrightarrow$ Should be better for the SPS

IN THE SPS (1/4)

New intensity record

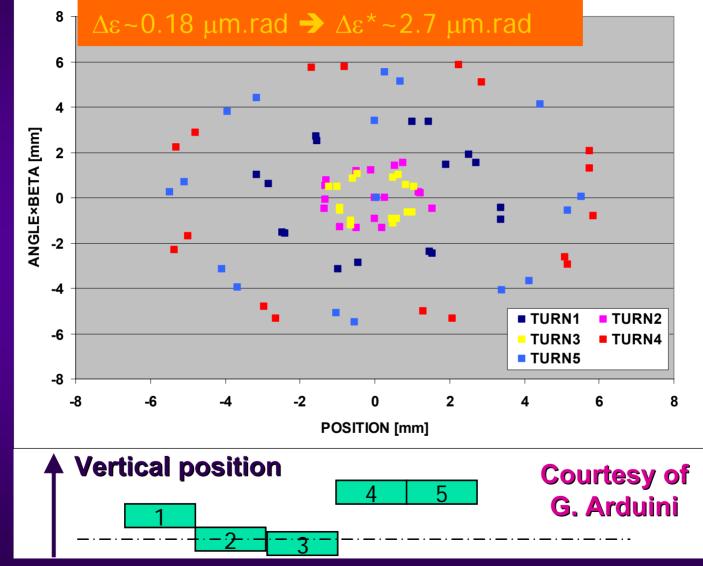
Elias Métral, PS & SPS Days, CERN, 13-14/01/2005

IN THE SPS (2/4)


	# p [10 ¹³ p]	Losses [%]	Hot-spot at switching			
FTA212	3.1		magnets			
BFCT102834	3.06	~1.6				
SPS INJ.	2.92	~4.6*	Mechanical			
END FB	2.86	~2	aperture			
F. PORCH	5.53	~3.3	RF (see next			
> TRANS.	5.39	~2.5	talk be Elena) + H scrap. at			
400 GeV/c	5.26	~2.4	transition ?			
EXT.		~1?	Ghost bunches			

* Injection losses to be verified – calibration (≠ kinds of BCTs)

Ghost bunches in the kicker gap


IN THE SPS (3/4)

- Injection and flat-bottom losses
 - Vertical mechanical aperture of the machine: presently limited by the ondulation of the Ti foil of the TIDVG (high energy beam dump absorber)
 - Extraction area in LSS6 and downstream (616-624)

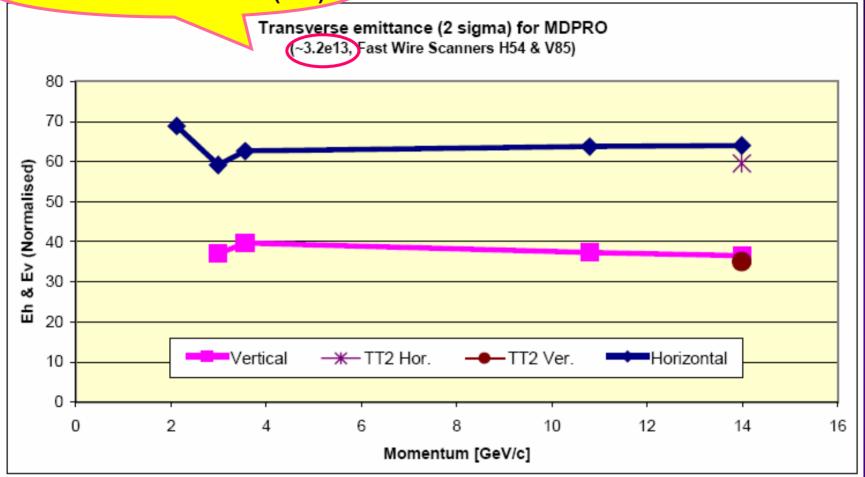
IN THE SPS (4/4)

Tight vertical aperture => The alignment of the 5 CT-turns is critical

TRANSVERSE EMITTANCES : COMPARISON WITH 1997

(1σ,norm) in μm

 $(1\sigma, \text{norm}) \le 12 \,\mu\text{m} @ 400 \,\text{GeV/c}$


		PSB		PS	PS	SPS	SPS	
		(SEMG-BTM)		(FWS)	(SEMG-TT2)	(SEMG-TT10)	(FWS) inj top	
Oct. 1997 ¹	Н	12.7 7.8 min max		(16.6)-	CT 4.6	10.1	11.6	
	V			8.3	7.5	6.9	6.4	
Sept. 2004 ²	Η	11.4	13.1	9.3	CT → 3.3		8.5	8
	V	6.8	8.0	9.1	6.4		5	4.3

¹ ~ 3.1 10¹³ p accelerated in the PSB (SL-MD Note 251)

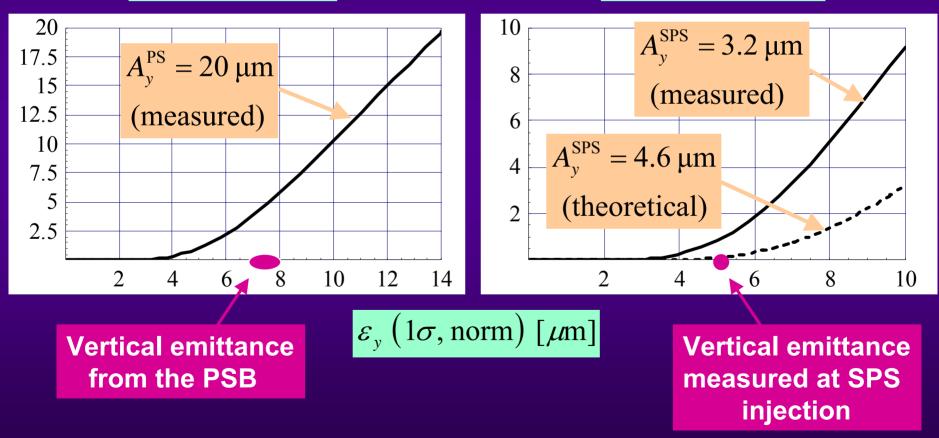
 2 ~ 3.7 10¹³ p accelerated in the PSB

PS/OP/Note 2000-013 (MD)

PS MD in 2000

 $\Rightarrow \boldsymbol{\varepsilon}_x (1\sigma, \text{norm}) \approx 16 \ \mu\text{m} \text{ and } \boldsymbol{\varepsilon}_y (1\sigma, \text{norm}) \approx 9 \ \mu\text{m} \text{ before CT}$

in 1997 \implies 1 GeV kinetic energy at PS injection MD in 2000 \implies 1.4 GeV kinetic energy at PS injection


Elias Métral, PS & SPS Days, CERN, 13-14/01/2005

~ Same result

PS and SPS vertical acceptances

Assuming a bi-Gaussian → Slightly pessimistic

Beam losses at PS injection [%] Beam losses at SPS injection [%]

POTENTIAL PROBLEMS (1/2)

PSB

- RF power on C04 cavities (H2)
- BTP.TRA transfo (between PSB and PS) needs to be operational to see where the losses are To be calibrated

PS

- Vertical aperture Alignment
- Losses at extraction with present CT
- Radiation issues
 - PAX.S43 (South Hall)

 Operational rule for the losses in the PS complex : "< ~250 10¹⁰ p lost between accelerated beams in the PSB and PS"
 ⇒ The record beam cannot be operational like this (~400 10¹⁰)
 ⇒ Decrease the intensity to reach this limit of losses

 \Rightarrow Change the rule... other mode of operation...

POTENTIAL PROBLEMS (2/2)

SPS

- Vertical aperture → TIDVG replacement, verification LSS6 extraction area and downstream (616-624)
- Horizontal / momentum aperture
- Tools needed for the alignment of the 5 CT-turns
- e-cloud appears @ ~100 GeV/c even for conditioned machine!
 ⇒ Higher spark rate on the electrostatic septa (used for the FT slow extraction) for operation in parallel CNGS/FT (in two different cycles) ⇒ Scrubbing is vital
- Interlock => Not fully ppm
- Radiation issues
 - Increase in ambient dose-rate at the exit of the BA1 ventilation through the TT10-TT2 tunnel (beam dump)
 - Remanent radiation (TIDVG&TIDH, TIDP and high dispersion areas, TT2-TT10 transfer line to be checked)

CONCLUSION

We managed to push the intensity about 20% above the nominal intensity (4.4 10¹³ p/p), which should give us some margin to provide this beam operationally

◆ To further increase the intensity per pulse for CNGS ⇒ See next talk by Elena

ACKNOWLEDGEMENTS

Many thanks to all the people involved in this subject (See Elena's talk) !