Elias Mêhal
10/02/2016
Corrections of the
Longitudinal Beam Dynamics
Examination
(1) In the six cases we see the longitudinal phase space $(\phi, \Delta \epsilon)$, with the separatrix (line separating the stable region and the unstable region) in red and the particles (each dot resents one particle) in blue. The sparabix (defining the RF buchet) is symmetric codex extend from-180deg $(-\pi) b+180 \mathrm{deg}(+\pi)$, which means that it is the case of a stationary bucket (ie. no acceloration/deccleration). This can also be seen by the fact that the synchronous phase $\phi_{s}=0$. Furthermore, $\phi_{s}=$ omens that we are belau hrusition as beam stability requires $\eta^{\cos \phi_{s}}>0$: as $\phi_{s}=0$, $\cos \phi_{s}=1$ and $y(0) \phi_{s}=\eta$. Therefor $\eta>0$ and as $y=\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{2 r}{ }^{2}}$, it means lat $\gamma<\gamma_{\text {tr }}$.
Below transition, a higher energy means a higher resolubiefequency (ar shatter revolution period) and therefor a partible gaining ency will arrive collier \Rightarrow The particles are oscillating anti-clockmise.
a) The bunch is wo long in the RF bucket \Rightarrow It oscillates and often a $\frac{1}{4}$ of a synchrotron period it leads to the right picture. We start to see a "S" shape due 1 the fact the the particles of the head and tail are oscillating with a smaller synchntron frequency.
b) Same case as a) but after many turns. And if we wait more, the beam will occupy a much largen area (emittanca) than the initial ane.
c) The bunch is injected with a phase error and it osilllates. Here again all the particles are not osullatriy with the same feguency. If we wait more, the bears will occupy also a much larger area than the initial one (and will become a "ring" and not a "disk" as in b)).
d) Same as c) but slanting from an energy error.
e) The energy spread of the bunch is too big as it is layer then the energy a cuptance of the bucket \Rightarrow The particles outside of the buctel ave being lost.
f) The dishibution of particles remains constant with time \Rightarrow the beam is "matched" langituslinally.
\rightarrow Conclusion: The case f) is whet we are airing for when a bunch is injected into syuchntron, which mean, thor:
i) There should be no phase error \rightarrow Not as c)
ii) There should be no energy err \rightarrow Not as d)
iii) The bunch should be injected inside the ff bucket, in. There should be a sufficiently large energy acceptance and length acceptance \rightarrow Not as e)
iv) The bunch should be "matched" (as inf) and not as in a) ard b) , ie. The ratio between the height as in width, should convespand to the RF bucket.
quebunch
(2) a) $p_{i}=26 \mathrm{GeV} / \mathrm{c}$
i) $f_{r e s}=\frac{v_{i}}{C}$ with $v_{i}=\beta_{i}, c, \beta_{i}=\sqrt{1-\frac{1}{\gamma_{i}^{2}}}, \gamma_{i}=\frac{\epsilon_{L_{i}}}{E_{0}}$

$$
\text { and } \epsilon_{l_{i}}=\sqrt{\epsilon_{0}^{2}+p_{i}^{2} c^{2}}
$$

$$
\begin{aligned}
& \Rightarrow E_{l_{i}}=26 \mathrm{GeV} \\
& \gamma_{i}=27,74 \\
& \beta_{i}=0,99935 \simeq 1 \\
& v_{i} \simeq c \\
& \text { and Prev } \simeq 43,351 \mathrm{kNz}
\end{aligned}
$$

ii) $\left.\begin{array}{rl}f_{R E} & =h . f_{\text {er }} \\ h & =4620\end{array}\right\} \Rightarrow f_{R E} \simeq 200 \mathrm{MMz}^{2}$
iii) $\eta_{i}=\frac{1}{\gamma_{i}{ }^{2}}-\frac{1}{\gamma_{k}{ }^{2}}=\frac{1}{\gamma_{i}{ }^{2}}-\alpha_{p}=-6,2 \cdot 10^{-4}$
\rightarrow Above Lrosition
iv) $Q_{s_{i}}=\sqrt{\frac{e V_{R} h^{2}}{2 \pi \beta_{i}^{2} \epsilon_{i}} \eta_{i} \cos \phi_{s_{i}}}$
$\eta_{i}<0 \Rightarrow \cos \phi_{s_{i}}<0 \Rightarrow \phi_{s i}=\pi$ as there is no acceleration/deceleation (injection plateau of $26 \mathrm{CeV} / \mathrm{c}$).

$$
\Rightarrow Q_{s i}=\sqrt{\frac{3.10^{6} \times 4620 \times 6,2.10^{-4}}{2 \pi \times 1^{2} \times 26 \cdot 10^{9}}} \simeq 7,3 \cdot 10^{-3}
$$

v) $n=\frac{1}{Q_{s i}} \simeq 138$ turns
vi) $z_{b}^{\text {max }}=\frac{1}{f_{R F}} \simeq 5 \mathrm{~ns}$

$$
\begin{aligned}
& z_{b}^{\max =\frac{1}{f_{R F}}} \begin{aligned}
\Delta \epsilon^{\text {max }}=\sqrt{\frac{2 \beta_{i}^{2} \epsilon_{r i} V_{R F}}{\pi h_{1} 71}} & =\sqrt{\frac{2 \times 1^{2} \times 26 \cdot 10^{9} \times 3 \cdot 10^{6}}{\pi \cdot 4620 \cdot 6,2 \cdot 10^{-4}}} \\
& =132 \mathrm{MeV}
\end{aligned}
\end{aligned}
$$

- From page 62, when $-\eta<0$

b) Acceleration yo 1 pe $p_{e}=450 \mathrm{GeV} / \mathrm{c}$

$$
\left.\begin{array}{l}
\text { - } \epsilon_{l e}=\sqrt{6_{0}^{2}+p_{e}^{2} c^{2}} \simeq 450 \mathrm{GeV} \\
-\Delta t=\frac{\epsilon_{l e}-\epsilon_{l i}}{d \epsilon_{l d t}}=\frac{450-26}{78} \simeq 5,4 \mathrm{~s} \\
-\Delta \epsilon_{\text {furn }}=\frac{d \epsilon}{d t} \times T_{\text {res }} \\
T_{\text {Ter }}=\frac{1}{\text { fer }} \simeq 23 \mu 5
\end{array}\right\} \Rightarrow \Delta \epsilon_{\text {hern }}=1,8 \mathrm{MeV}
$$

$$
\begin{aligned}
& =2,5 \mathrm{rod} \\
& \simeq 143,1 \mathrm{deg} \longrightarrow \cos \left(\phi_{3, a c c}\right)=-0,8
\end{aligned}
$$

- From page 62, whem $\left\lvert\, \begin{aligned} & -y<0 \\ & - \text { acceleration }\end{aligned} \Rightarrow \phi_{s} \in\left[90^{\circ}, 180^{\circ}\right]\right.$
\rightarrow we computed above $143,1 \mathrm{deg}$.

c) Deceleration doun to plow $=20 \mathrm{GVV} / \mathrm{c}$

$$
\begin{aligned}
& \text { celeration doun to plow }=20 \mathrm{GeV} / \mathrm{c} \\
& \begin{aligned}
\eta_{\text {low }}=\frac{1}{\gamma_{\text {luw }}^{2}}-\alpha \text { with } \gamma_{\text {low }} & =\frac{\epsilon_{\text {low }}}{\epsilon_{0}}=\frac{\sqrt{\epsilon_{0}^{2}+\rho_{\text {lume }}^{2}}}{\epsilon_{0}} \\
& \simeq 21,3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \phi_{\text {s,acc }}=\pi-\phi_{s, a c c}^{B T} \\
& =\pi-\operatorname{Arcsin}\left(\frac{\Delta \epsilon_{\text {mirn }}}{e V_{\mathrm{RF}}}\right) \\
& \approx 2,5 \mathrm{rod} \\
& \text { - } B_{e p}\left[T_{m}\right]=3,3356 \mathrm{pe}[\mathrm{CeN} / \mathrm{c}] \\
& \Rightarrow \rho=\frac{3,3356 \times 450}{2,03} \simeq 739,4 \mathrm{~m} \\
& \theta_{d}=\frac{2 \pi}{N_{d}} \simeq 8,4 \cdot 10^{-3} \mathrm{rad} \\
& L_{d}=\rho \cdot \theta_{d}=6,2 \mathrm{~m} \\
& \text { - } \frac{d B}{d t}=\frac{V_{R f} \cdot \sin \phi_{s, a c c}}{C_{\rho}} \simeq 0,35 \mathrm{~T} / \mathrm{s} \text {. } \\
& \text { - } B_{i} \rho[\mathrm{Tm}]=3,3356 \mathrm{pi}[\mathrm{CoV} / \mathrm{c}] \\
& \Rightarrow B_{i}=0,12 \mathrm{~T}
\end{aligned}
$$

$$
\Rightarrow M_{l o w} \simeq 2,7 \cdot 10^{-4} \longrightarrow \text { Below havition }
$$

- Yes, the particles will cos hasition energy as at $26 \mathrm{GFV} / \mathrm{c}, 7<0$ and of $20 \mathrm{CeV} / \mathrm{c}, 7>0$.
\rightarrow The transition enogy is the energy that consespands to $y=0$, i.e. Hiss is the energy for which the velocity variation is compensated by the trajectory variation att thaegore the revolution Pequancy remains constant (despite a change of bean momentum).
- From page 62, when $\left\lvert\, \begin{aligned} & -y<0 \text { (i.e. shil(abure transition) } \\ & -\quad \text { a }\end{aligned}\right.$
deceleration

$$
\Rightarrow \phi_{S_{1}} \in\left[180^{\circ}, 270^{\circ}\right]
$$

and when $-\begin{aligned} & -\eta>0(i . e . \text { below tRansition) } \\ & \qquad \text { decelootion }\end{aligned}$

$$
\Rightarrow \phi_{s_{2}} \in\left[270^{\circ}, 360^{\circ}\right]
$$

\Leftrightarrow If we wot to use the sarre RF voltage, deceledion rate-acculealion rate, then one has:

$$
\begin{aligned}
& \phi_{s_{1}}=360-\phi_{s_{\text {, acc }}} \\
& \simeq 217 \mathrm{deg} \\
& \text { and } \phi_{52}=360+\left(180-\phi_{s_{1}}\right) \\
& \simeq 323 \mathrm{deg} \longrightarrow \cos (\phi s 2)=+0,8
\end{aligned}
$$

