1) Fill in the Table using the following formulae

\[E_t = E_e + E_r \]
\[x = \frac{E_t}{E_e} \]
\[\beta = \sqrt{\frac{E_t - E_e}{E_e}} \]
\[p = \beta \sqrt{E_e} \]
\[B_g[T_m] = \frac{p}{0.3} \]

<table>
<thead>
<tr>
<th></th>
<th>(E_r)</th>
<th>(E_t) (GeV)</th>
<th>(p) [MeV/c]</th>
<th>(\beta)</th>
<th>(x)</th>
<th>(B_g[T_m])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection</td>
<td>50 MeV</td>
<td>388.26</td>
<td>310.366</td>
<td>0.31605</td>
<td>1.05323</td>
<td>1.03455</td>
</tr>
<tr>
<td>Extraction</td>
<td>1.6 GeV</td>
<td>2333.26</td>
<td>2141.76</td>
<td>0.91596</td>
<td>2.49212</td>
<td>7.138</td>
</tr>
<tr>
<td>(160 MeV)</td>
<td>160 MeV</td>
<td>1038.26</td>
<td>570.827</td>
<td>0.51376</td>
<td>1.17053</td>
<td>1.90276</td>
</tr>
</tbody>
</table>

2) No! It cannot be considered ultrarelativistic since \(\beta = 0.3 \) at inj. and it's only reaching 0.9 at flat-top

\[f_{ew} = \left(\frac{2\pi R}{\beta c} \right)^{-1} = \begin{cases} 0.593 & 378 \text{ MHz at 50 GeV} \\ 1.748145 & 160 \text{ MeV} \end{cases} \]
3) \(b = 1 \) \(\Rightarrow \) \(f_{FE} = 4 f_{HR} \)

- The RF frequency is increasing by a factor \(\sim 2.8 \)
- The max bucket length is \(2 \tau \) (stationary) and since there is only \(b = 1 \) bunch in the machine \(\Rightarrow \) \(L = 2 \tau R = 157 \text{ m} \)

4) \(\chi = \frac{1}{\sqrt{2} c} = 4.156 > \chi_{ij} > \chi_{ij} \) \(\Rightarrow \) No! The PSB is always

Below Transition:

\[
\eta = \frac{d f / f}{d p / p} = \frac{4}{x^2} - \frac{4}{x_{inj}^2}
\]

\[\eta > 0 \quad \text{below transition} \Rightarrow \text{an increase of energy corresponds}
\]
\[\text{to an increase of flux (Bernstein)}
\]
\[\eta < 0 \quad \text{above transition} \Rightarrow \text{an increase of energy corresponds}
\]
\[\text{to a decrease of flux}
\]

5) \(\phi = 0 \) since on the "flat top" \(\vec{B} = 0 \)

\[\phi \text{ we were above transition } \phi = \pi \]

6) \(\Delta x = \frac{D \Delta \phi}{P} \)

\[\Delta x \leq 3 \text{ cm} \]

\[\Rightarrow \left| \frac{\Delta \phi}{P} \right| = 0.01 = 1 \%
\]
7) \(\Delta f = n \frac{\Delta B}{B} \) since \(B = \text{const.} \) at extraction

\(q^i = \frac{v_{e}^i}{v_{n}^i} - \frac{v_{e}^j}{v_{n}^j} = 0.103113 \)

\(\Delta f = \pm \frac{\Delta B}{B} \frac{f_0}{f_{\max}} = \pm 1.803 \text{ kHz} \)

\(f = f_{\text{max}} \pm \Delta f = \left\{ \begin{array}{l} 1.769352 \text{ MHz} \\ 1.768712 \text{ MHz} \end{array} \right. \)

1.768712 MHz (pay attention, if you want to add \(\pm 1.8 \text{ kHz} \), you need to compute the few with this precision at least \(B \)).

8) \(N_b = \frac{\left(B^2 \right)^{10/7}}{20/7} \left(\frac{0.71213}{0.348} \right) N_{50 \text{ MVN}} = 2.044 N_{50 \text{ MVN}} \)

9) \(B_{\text{inj}} = \frac{B_0}{P} \), \(P = \frac{L_i}{(2\pi/3)} \approx 8.24 \text{ m} \)

\(B_{\text{inj}} = \left\{ \begin{array}{l} 0.125 \text{ T @ 50 MVN} \\ 0.231 \text{ T @ 160 MVN} \end{array} \right. \)

10) \(\phi_s = \arcsin \left(\frac{2\pi R B_s}{V_{\text{ref}}} \right) = 0.197 \text{ rad} = 11.36^\circ < 90^\circ \) because \(B_s \) below \(\Theta \).

\(B_s = \frac{dB_s}{dt} \) since \(g \approx 0 \).

Alternatively we could have chosen the other solution.

Continue...
To compute the max bunch length we need to find the point B.

Let's take the eq of the separatrix and impose $\phi = 0$

Need to solve for ϕ:

$$\cos \phi + \phi \sin \phi = \cos (\pi - \phi_5) + (\pi - \phi_5) \sin \phi_5$$

$$(10) \quad T_{new}^{(10MeV)} = \frac{2\pi R}{\gamma c} = 1.007 \mu s$$

$$\Delta B = \frac{dB}{dt} \times \frac{1}{\gamma} \times 100 T_{new} = 1.824 \cdot 10^{-4} \text{T}$$

If $R = \text{const}$ then $\frac{\Delta f}{f} = \frac{\Delta B}{B} = \frac{1.824 \cdot 10^{-4} \text{T}}{0.23084 \text{T}} = 5.3 \cdot 10^{-4}$

$$\Delta f = 3.87 \cdot 10^{-4} \quad \Delta f = \Delta f \cdot \frac{1}{T_{new}^{(10MeV)}} = 380 \text{ Hz}$$

$$(12) \quad \Delta E = V_{RF} \Delta m/\gamma = 157.6 \text{ GeV} \Rightarrow \sqrt{E_E} = 160.1576 \text{ GeV}$$