(1) \(\gamma_i = \gamma \left(\frac{1}{\gamma_i^2} \right) = \gamma \left(\frac{1}{\frac{4}{5}} \right) = \frac{4}{\gamma} \approx 55,7 \).

- \(\gamma_i = \frac{E_i}{E_0} = \frac{\sqrt{E_0^2 + p_i^2 c^2}}{E_0} = \frac{\sqrt{0,938^2 + 450^2}}{0,938} \approx 479,745 \)

- \(\gamma_i = \frac{4}{\gamma_i^2} - \gamma \approx 3,18 \cdot 10^{-4} \) Already very close to \(\gamma \).

- \(\gamma_c = \frac{E_c}{E_0} = \frac{\sqrt{E_0^2 + p_c^2 c^2}}{E_0} = \frac{\sqrt{0,938^2 + 7000^2}}{0,938} \approx 746,69 \)

- \(\gamma_c = \frac{4}{\gamma_c^2} - \gamma \approx 3,22 \cdot 10^{-4} \)

- \(\gamma_i \leq 0 \) \(\Rightarrow \) \(\gamma \) is always \(\leq 0 \) and therefore LHC does not cross transition.

- As the LHC operates above transition, it means that an accelerated particle will take more time to travel and therefore the revolution period will increase.

(2) \(\gamma_i = \frac{1}{\sqrt{1 - \beta_i^2}} \Rightarrow 1 - \beta_i^2 = \frac{1}{\gamma_i^2} \Rightarrow \beta_i = \sqrt{1 - \frac{1}{\gamma_i^2}} \approx 0,995598 \)

\(\gamma_c = \frac{1}{\sqrt{1 - \beta_c^2}} \Rightarrow \beta_c = \sqrt{1 - \frac{1}{\gamma_c^2}} \approx 1 \)

One can conclude that \(\beta_c = 1 \) from injection all collisions and that one can approximate the velocity of the particles by \(c \) (the speed of light) and that the revolution frequency (and revolution period) is almost constant.
5 = \beta \cdot c = c \cdot \frac{2 \pi \cdot f_{rev}}{v_{circ}} \quad \Rightarrow \quad f_{rev} = \frac{c}{v_{circ}} = \frac{2,997925 \cdot 10^8}{26658,883} \\
= 11,2455 \text{ kHz}

and \quad T_{rev} = \frac{1}{f_{rev}} \approx 88,92 \mu s

\text{1.} \quad f_{ee} = h \cdot f_{rev} = 35640 \times 11245,5 = 400,79 \text{ MHz}

\text{2.} \quad \Delta E_{\text{gain}}^{\text{1 turn}} = \Delta E_{\text{gain}}^{\text{1 turn}} \times T_{rev} \approx 485,38 \text{ keV/turn}

\text{3.} \quad \Delta E_{\text{gain}}^{\text{1 turn}} = e \cdot V_{ke} \cdot \sin \phi_5 \Rightarrow \sin \phi_5 = \frac{\Delta E_{\text{gain}}^{\text{1 turn}}}{e \cdot V_{ke}} \approx 0,03

As we are above transition, beam stability requires \(\gamma \cdot \cos \phi_5 > 0 \)
\(\leq 0 \) \(\Rightarrow \) \(\cos \phi_5 < 0 \)

\Rightarrow \quad \text{If we would have been below transition, one would have had } \phi_5^{\text{st}} = \arcsin (0,03) \approx 0,03 \text{ rad}
\quad = 1,74 \text{ degrees}

But the LHC is operating above transition.

Therefore \(\phi_5 = \pi - \phi_5^{\text{st}} \approx 3,11 \text{ rad} \)
\quad = 178,26 \text{ degrees}

\text{4.} \quad Q_{\phi} = \frac{2 \pi}{N_d} = \frac{2 \pi}{1238} \approx 5,1 \text{ mrad}
\quad \approx 0,93 \text{ degrees}
\[L_d = \frac{p_d \cdot \alpha_d}{p_d} \Rightarrow \frac{L_d}{\alpha_d} = \frac{14,3}{0,0051} = 2803,93 \]

\[\Delta E_{\text{gain}} = \frac{e \cdot p_d \cdot B \cdot 2\pi R}{\frac{dB}{dt}} \Rightarrow \frac{B}{dt} = \frac{\Delta E_{\text{gain}}}{e \cdot p_d \cdot \text{Circ}} \]

\[\approx 6,5 \text{ mT/s} \]

\[B_i \cdot p_d = 3,3356 \cdot p_i \left[\text{mV} / \text{cm} \right] = \Rightarrow B_i \approx 0,535 \text{ T} \]

\[B_c \cdot p_d = 3,3356 \cdot p_c \left[\text{mV} / \text{cm} \right] = \Rightarrow B_c \approx 8,3 \text{ T} \]

\[B_c = B_i + \dot{B} \cdot \Delta t = 0,535 + 6,5 \cdot 10^{-3} \times 60 \times 20 = 8,3 \text{ T} \]

\[\Rightarrow \text{Same result obtained as forecast.} \]

\[\sin \phi_s = 0 \text{ (as flat top)} \]

\[\gamma \cos \phi_s > 0 \text{ (for beam stability reasons)} \]

\[\Rightarrow \cos \phi_s < 0 \]

\[\phi_s = \frac{\pi}{2} \text{ rad} \]

\[= 180 \text{ degrees} \]

5. The angular synchronism frequency is given by

\[\Omega_s = \sqrt{\frac{e \cdot \text{VeC} \cdot \gamma \cdot h \cdot c \cdot \cos \psi_s}{2\pi R_e \cdot E_{sc}}} \]

\[R = \text{Circ} \frac{2\pi}{2\pi} \]

\[\approx 4842,89 \text{ m} \]

\[\approx 144,478 \text{ rad/s} \]

\[\Rightarrow \text{at top energy} \]

\[\approx 144,478 \text{ rad/s} \]
\[p_s = \frac{2s}{2\pi} \approx 23 \text{ Hz} \]

\[T_s = \frac{1}{p_s} \approx 43.5 \text{ ms} \]

\[\phi_s = \frac{p_s}{f_{\text{rev}}} \approx 2 \times 10^{-3} \]

A synchrotron oscillation is performed in \(\frac{1}{\phi_s} \approx 689 \) turns of the LHC.

7.1) Clockwise, as beam 2 is moving anti-clockwise and it will go slower than beam 1 to perform a LHC turn as it is accelerated and we are above transition.

7.2) \[\gamma_c = \frac{\Delta p_{\text{rev}}}{\Delta p} = \frac{\Delta p_{\text{rev}}}{\frac{\Delta p}{p}} = \gamma_{\text{rev}} \frac{\Delta p}{p} \]

\[= -3.28 \times 10^{-4} \cdot 11245.5 \cdot 10^{-4} \]

\[\approx -0.36 \text{ mHz} \]

\[\Delta f_{\text{rev}} = \Delta f_{\text{rev}} \cdot h = -12.9 \text{ Hz} \]

\[\Delta p = \frac{\Delta \text{Circ}}{\text{Circ}} \]

\[= \Delta \text{Circ} = \Delta p \cdot \text{Circ} \frac{\Delta p}{p} \]

\[= 3.225 \times 10^{-4} \times 26658.388 \times 10^{-5} \]

\[\approx 859.7 \text{ mm} \]

\[\Delta R = \frac{\Delta \text{Circ}}{2\pi} \approx 136.8 \text{ mm} \]
As bunch 1 is moving clockwise and bunch 2 is moving anti-clockwise with the same speed, when bunch 1 is at IPs, bunch 2 has to be at IP3 if they want to collide at IP2 ⇒ it means that bunch 2 has to be shifted by a quarter of the LHC circumference compared to bunch 1 (and the initial situation where the 2 bunches collided in IP1).

7.4) Let's call n the number of turns needed for bunch 2 to be shifted by a quarter of the LHC circumference and \(\Delta \text{Trv} \) the shift in revolution period for bunch 2 with the higher momentum \(\left(\frac{\Delta p}{p} = 10^{-4} \right) \)

\[n \cdot |\Delta \text{Trv}| = \frac{\text{Trv}}{4} \]

if one wants bunch 2 to be shifted by a quarter of the LHC

\[n = \frac{1}{4 \cdot |\Delta \text{Trv}|} \text{ and } |\Delta \text{Trv}| = |\Delta \text{Trv}| = |\gamma \cdot \frac{\Delta p}{p}| \]

\[n = \frac{1}{4 |\gamma \cdot \frac{\Delta p}{p}|} \text{ and } n = \frac{\Delta k \cdot p \text{eV}}{\text{Trv}} = \Delta k \text{eV} \cdot \text{Trv} \]

\[\Delta k \text{eV} = \frac{1}{4 \text{eV} / |\gamma \Delta p / p|} \]

\[\frac{\Delta p}{p} = 10^{-4} \]

\[\gamma = \gamma_c \]

\[\Delta k \text{eV} = \frac{1}{4.11265.5 \cdot 3.22 \cdot 10^{-4} \cdot 10^{-4}} \approx 1 \text{ min} 29.5 \]

7.5) Bunch 2 would have moved anticlockwise and it would have taken
3 times more time to have bunches 1 and 2 colliding in IP2 (6 min 29.5) only. The other (faster) solution would have been to decelerate bunch 2 by using a momentum offset of 10^{-4} and in this case the time would have been the same (11 min 29s).

7.6) To collide in IP8 it will take 3 times more time, i.e. 34 min 28.5 (starting from the situation of collision in IP1 and IP5).
- The other method is to decelerate bunch 2 (momentum offset of 10^{-4}) and in this case it takes the same time as for bunch 2 and 1 to collide in IP2 = 11 min 29s.
- If we start from the situation where bunches 2 and 1 collide in IP2, it takes 2 x 11 min 29.5 = 22 min 58.5 in both cases (+ and -10^{-4}).

7.7) To go faster we need to use a higher momentum offset. The problem is that it leads to a larger DR and therefore possible particle losses (due to interaction with the vacuum chamber or other equipments close to the beam).