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4  Impedance and collective effects 

As the beam intensity increases, the beam can no longer be considered as a collection of non-interacting 
single particles: in addition to the “single-particle phenomena”, “collective effects” become significant. 
At low intensity a beam of charged particles moves around an accelerator under the Lorentz force 
produced by the “external” electromagnetic fields (from the guiding and focusing magnets, RF cavities, 
etc.). However, the charged particles also interact with themselves (leading to space charge effects) and 
with their environment, inducing charges and currents in the surrounding structures, which create 
electromagnetic fields called wake fields. In the ultra-relativistic limit, causality dictates that there can be 
no electromagnetic field in front of the beam, which explains the term “wake”. It is often useful to 
examine the frequency content of the wake field (a time domain quantity) by performing a Fourier 
transformation on it. This leads to the concept of impedance (a frequency domain quantity), which is a 
complex function of frequency. The charged particles can also interact with other charged particles 
present in the accelerator (leading to two-stream effects, and in particular to electron cloud effects in 
positron/hadron machines) and with the counter-rotating beam in a collider (leading to beam-beam 
effects). As the beam intensity increases, all these “perturbations” should be properly quantified and the 
motion of the charged particles will eventually still be governed by the Lorentz force but using the total 
electromagnetic fields, which are the sum of the external and perturbation fields. Note that in some cases 
a perturbative treatment is not sufficient and the problem has to be solved self consistently. These 
perturbations can lead to both incoherent (i.e. of a single particle) and coherent (i.e. of the centre of mass) 
effects, in the longitudinal and in one or both transverse directions, leading to beam quality degradation or 
even partial or total beam losses. Fortunately, stabilizing mechanisms exist, such as Landau damping, 
electronic feedback systems and linear coupling between the transverse planes (as in the case of a 
transverse coherent instability, one plane is usually more critical than the other). 
 This chapter is structured as follows: space charge is discussed in Section 4.1, wake fields (and related 
impedances) in Section 4.2, the induced coherent instabilities in Section 4.3 and the Landau damping 
mechanism in Section 4.4. The two-stream effects are analyzed in Section 4.5, concentrating mainly on 
electron cloud, while beam-beam effects are reviewed in Section 4.6, before concluding in Section 4.7 by 
the numerical modelling of collective effects. 

4.1  Space charge 

4.1.1  Direct space charge 

Two space charge effects are distinguished: the direct space charge and the indirect (or image) one [1-4 
and references therein]. The direct space charge comes from the interaction between the particles of a 
single beam, without interaction with the surrounding vacuum chamber. Consider two particles with the 
same charge (for instance protons) in vacuum. They will feel two forces: the Coulomb repulsion (as they 
have the same charge) and the magnetic attraction (as they represent currents moving in the same 
direction, leading to an azimuthal magnetic field). Let’s assume that particle 1 is moving with speed 
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€ 

υ1 = β1 c  with respect to the laboratory frame, with 

€ 

β  the relativistic velocity factor and 

€ 

c  the speed of 
light. In its rest frame, particle 1 produces only an electrostatic field, which can be computed, and 
applying the relativistic transformation of the electromagnetic fields between the rest and laboratory 
frames, the magnetic contribution can be obtained. Note that there is no magnetic contribution in the 
longitudinal plane (

€ 

Bs = 0), which leads to the longitudinal Lorentz force 

€ 

Fs = e Es , where 

€ 

e is the 
elementary charge, 

€ 

s  the azimuthal coordinate and 

€ 

Es  the longitudinal electric field. The transverse 
(horizontal and vertical) Lorentz force on particle 2, moving with speed 

€ 

υ2 = β2 c  with respect to the 
laboratory frame, is written 
 

 

€ 

Fx,y = e Ex,y
1− β1 β2( ) , if 2 moves in same direction as 1 
1 + β1 β2( ) , if 2 moves in oppo. direction as 1

.
 

(1) 

 
The first case corresponds to the space charge case where both particles move in the same direction, while 
the second corresponds to the beam-beam case (see Section 4.6) where the particles move in opposite 
direction. In both cases, the first term comes from the electric field while the second comes from the 
magnetic one. The main difference between the two regimes is that for the space charge case there is a 
partial compensation of the two forces, while for the beam-beam case the two forces add. The space 
charge force is maximum at low energy and vanishes at high energy, while the beam-beam force is 
maximum at high energy. Considering the space charge regime and assuming the same speed for both 
beams, the Lorentz force simplifies to  
 

 

€ 

Fx,y = e Ex,y 1− β 2( ) = e
Ex,y
γ 2

,
          

€ 

Fs = e Es ,
 

(2) 

 
where 

€ 

γ  is the relativistic mass factor. Assuming a circular beam pipe with radius 

€ 

b  (which is important 
only for the computation of the longitudinal force) and applying Gauss’s law, the electromagnetic fields 
can be computed for a bunch with Gaussian radial density (with rms 

€ 

σ x =σ y =σ ) using the cylindrical 
coordinates (

€ 

r , 

€ 

θ , 

€ 

s). The associated Lorentz forces are given by 
 

 

€ 

Fr =
e
γ 2

Er =
eλ z( )
2 π ε0 γ

2
1− e

−
r2

2σ 2

r

 

 

 
 
 
 

 

 

 
 
 
 

,
          

€ 

Fs = −
e

2π ε0 γ
2

d λ z( )
d z

1− e
−
r '2

2σ 2

r'
dr'

r '= r

b

∫ ,
 

(3) 

 
where 

€ 

λ z( )  is the longitudinal line density, 

€ 

z = s −υ t  with 

€ 

t  being the time, and 

€ 

ε0 the vacuum 
permittivity. A first observation is that the space charge forces are highly nonlinear. Another important 
observation is that the radial force is proportional to the longitudinal density while the longitudinal one is 
proportional to the derivative of the longitudinal density. Linearizing both forces (for very small 
amplitudes where 

€ 

r << σ ) leads to  
 

 

€ 

Fr ≈
eλ z( )
2 π ε0 γ

2
r
2σ 2 ,

          

€ 

Fs ≈ −
e

4 π ε0 γ
2

d λ z( )
d z

1+ 2 ln b
2 σ

 

 
  

 

 
  

 

 
 
 

 

 
 
 
.
 

(4) 

 
This means that the transverse space charge force is linear for small amplitudes and defocusing. Due to 
the additional space charge force, e.g. the horizontal betatron tune will no longer be the unperturbed tune 

€ 

Qx0

 
but will be 

€ 

Qx =Qx0 + ΔQx , where 

€ 

ΔQx  is the horizontal incoherent betatron tune shift. Similarly, the 
new synchrotron tune will be 

€ 

Qs =Qs0 + ΔQs , where 

€ 

ΔQs  is the incoherent synchrotron tune shift. The 
betatron and synchrotron linearized incoherent space charge tune shifts are given by 
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€ 

ΔQx
Lin = −

Nb rp
4 π β γ 2 εx , rms

norm B
,
         

€ 

ΔQs
Lin =

η Nb e
2 R2

8π 2π ε0 Etotal β
2 γ 2σ z

3Qs0

1+ 2 ln b
2 σ

 

 
  

 

 
  

 

 
 
 

 

 
 
 
,
 

(5) 

 
where 

€ 

Nb  is the number of protons in the bunch,
 

€ 

rp  the classical proton radius, 

€ 

εx , rms
norm = β γ εx , rms  the 

normalized rms horizontal emittance, with 

€ 

εx , rms =σ 2 / βx  at a place of zero dispersion with 

€ 

βx  the 
horizontal betatron function, 

€ 

B = 2π σ z / 2π R  is the bunching factor (assuming a Gaussian longitudinal 
distribution with rms 

€ 

σ z ) with 

€ 

R  the average machine radius, 

€ 

η = γ tr
−2 − γ −2  the slip factor (where 

€ 

γ tr  stands 
for 

€ 

γ  at transition energy) and 

€ 

Etotal  is the total particles’ energy. It is shown from Eq. (5) that the 
transverse betatron tune shift is always negative, revealing that the space charge force is always 
defocusing. Note that for the case of an ion with mass number 

€ 

A  and charge state 

€ 

Z , the transverse tune 
shift has to be multiplied by 

€ 

Z 2 / A . 
 Contrary to the transverse case, the longitudinal space charge is defocusing below transition (as 

€ 

η < 0 ) 
and focusing above (as 

€ 

η > 0 ). One can therefore already anticipate some longitudinal mismatch issues 
when crossing transition with high-intensity bunches, i.e. the bunch length will not be in equilibrium 
anymore and will oscillate inside the RF buckets. Such a case is depicted in Fig. 4.1(left) for the particular 
case of the high-intensity bunch in the CERN PS machine, which is sent to the nTOF (neutron Time-Of-
Flight) experiment [5]. The computed quadrupolar oscillation is induced when transition is crossed and is 
a consequence of the longitudinal mismatch: below transition space charge is defocusing which reduces 
the bucket height and increases the bunch length, while above transition space charge is focusing which 
increases the bucket height and decreases the bunch length. Therefore, there is an intensity-dependent 
step in the equilibrium bunch length at transition, which leads to a longitudinal mismatch and subsequent 
quadrupolar oscillations. If these bunch shape oscillations are not damped they will eventually result in 
filamentation and longitudinal emittance blow-up. It’s worth mentioning that in presence of significant 
space charge, the minimum of bunch length is not reached right at transition anymore, but after about one 
nonadiabatic time Tc, i.e. after ~ 2 ms in the present case [4]. The same kind of mechanism appears with 
the inductive part of the longitudinal machine impedance (see Section 4.2). The only difference is that in 
this case, the equilibrium bunch length is shorter below transition and longer above transition.  
 
 

 
 
 
Fig. 4.1. (Left) Computation of the evolution of the full bunch length vs. time for the case of the nonadiabatic theory 
(the adiabatic theory is not valid anymore close to transition) with and without space charge, applied to the PS nTOF 
bunch [5]. Tc is the nonadiabatic time, equal to ~ 2 ms in the present case. (Right) Evolution of the angle of the tilted 
ellipse around transition (without space charge). 
 
 If transition crossing cannot be avoided, the 

€ 

γ t  jump is the only (known) method to overcome all the 
intensity limitations. It consists in an artificial increase of the transition crossing speed by means of fast 
pulsed quadrupoles. The idea is that quadrupoles at nonzero dispersion locations can be used to adjust the 
momentum compaction factor. The change in momentum compaction (called 

€ 

γ t  jump) depends on the 
unperturbed and perturbed dispersion functions at the kick-quadrupole locations. These schemes were 
pioneered by the CERN PS group [6-8]. Such a 

€ 

γ t  jump scheme makes it possible to keep the beam at a 
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safe distance from transition, except for the very short time during which the transition region is crossed 
at a speed increased by one or two orders of magnitude. Looking at Fig. 4.1(left) clearly reveals why an 
asymmetric jump was proposed in the past [7] to damp the longitudinal quadrupolar oscillations arising 
from the space charge induced mismatch: the idea is to jump rapidly from an equilibrium bunch length 
below transition to the same value above. The amplitude of the jump is defined by the time needed to go 
to the same equilibrium bunch length above transition. The minimum amplitude of the jump corresponds 
to the case represented with the dashed blue line starting right at transition. However, in this case the 
initial longitudinal phase space ellipse is tilted (see Fig. 4.1(right)), while the final one is almost not, 
which is not ideal. One might want therefore to start the jump earlier, when the longitudinal phase space 
is almost not tilted, for instance at 

€ 

x ≈ − 2 , which requires a larger jump (see the dashed orange line in 
Fig. 4.1(left)).  
 Coming back to the transverse space charge, in the case of an elliptical beam (instead of a round one), 
one has to replace 

€ 

2σ x
2  by 

€ 

σ x (σ x +σ y )  and 

€ 

2σ y
2  by 

€ 

σ y (σ x +σ y ) . Furthermore, due to the nonlinear nature 
of the space charge, the tune shifts of the different particles will not be the same, which will lead to a tune 
spread: plotted in the tune diagram it is called a tune footprint. The latter has to be accommodated in the 
tune diagram, without crossing harmful resonance lines, which might lead to emittance growth and/or 
beam losses. The exact tune footprint depends on the distribution and to illustrate this effect we consider 
in the following a round beam with quasi-parabolic distribution function, whose particle density extends 
up to 

€ 

~ 3.2σ  [9,10]. The corresponding horizontal 2D (i.e. neglecting the longitudinal distribution) space 
charge force is plotted in Fig. 4.2(left), and the tune footprint in Fig. 4.2(right). The unperturbed (low-
intensity) working point is in the top right corner, the small-amplitude particles have the largest tune 
shifts while the largest amplitude particles have the smallest tune shifts. If the longitudinal distribution is 
taken into account, the longitudinal variation (due to synchrotron oscillations) of the transverse space-
charge force fills the gap until the low-intensity working point. However, it is interesting to plot it like 
this to clearly see the region occupied by the large synchrotron amplitude particles, because the 
interaction with a nonlinear resonance will depend on the overlapping position. Several possibilities exist 
with core emittance blow-up, creation of tails and/or beam losses. In particular, if the resonance interacts 
with the small amplitude particles, there could be a regime of loss-free (core-)emittance blow-up, while if 
the resonance interacts with the particles with large synchrotron amplitudes (i.e. if the resonance line is in 
the gap between the 2D tune footprint and the low-intensity working point) there could be a regime with 
continuous loss due to the trapping-detrapping mechanisms, as observed both in the PS [11] and at 
SIS18 [12]. 
 Finally, another space charge mechanism, which could be important in high-intensity synchrotrons 
with unsplit transverse tunes (i.e. having the same integer) is the Montague resonance which can lead to 
emittance transfer from one plane to the other and might lead to losses if the beam fills the 
aperture [13,14].  

 
 
 

 
 
 

 
 
 

 
 

Fig. 4.2. Horizontal 2D (i.e. neglecting the longitudinal distribution) space charge force (left) and tune footprint for 
the case of the CERN LHC at injection, assuming the tunes in collision (64.31, 59.32). The parameter 

€ 

n0  is the 
constant term in the particle density [10]. 
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4.1.2  Indirect space charge 

In the case of a beam off-axis in a perfectly conducting circular beam pipe (with radius 

€ 

b), a coherent (or 
dipolar, i.e. of the centre of mass) force arises, which can be found by using the method of the images (to 
satisfy the boundary condition on a perfect conductor, i.e. of a vanishing tangential electrical field). The 
electric field is always assumed to be non-penetrating. However, for the magnetic field, the situation is 
more complicated as it may or may not penetrate the vacuum chamber: the high-frequency components, 
called “ac” will not penetrate, while the low-frequency ones, called “dc” will penetrate and form images 
on the magnet pole faces (if there are some; otherwise they will go to infinity and will not act back on the 
beam). In the case of a non-penetrating “ac” magnetic field, one finally obtains (keeping only the linear 
terms, i.e. 

€ 

x << b  and 

€ 

y << b , where 

€ 

x  and 

€ 

y  are the transverse displacements of the centre of mass) 
 

 

€ 

Fx = Λ c x ,
          

€ 

Fy = Λ c y ,
          

€ 

Λ c =
λ e

2 π ε0 γ
2 b2

.
 

(6) 

 
It can be seen that the transverse coherent space charge force of Eq. (6) is similar to the transverse 
incoherent space charge force of Eq. (4, left): 

€ 

2σ 2  has been replaced by 

€ 

b 2 . 
 The same analysis can be performed in the case of two infinite (horizontal) parallel plates spaced by 

€ 

2 h  and the results are the following (assuming that the transverse beam sizes are much smaller than 

€ 

h , 
assuming only the “ac” magnetic part and keeping only the linear terms) 
 

 

€ 

Fx = Λ c
π 2

24
x − π

2

24
x

 

 
 

 

 
 ,

          

€ 

Fy = Λ c
π 2

12
y + π 2

24
y

 

 
 

 

 
 .

 
(7) 

 
Therefore, compared to the circular case, the coherent force is smaller by 

€ 

π 2 / 24 ≈ 0.4  in the horizontal 
plane and 

€ 

π 2 / 12 ≈ 0.8 in the vertical one. Furthermore, there is a second incoherent (or quadrupolar, as it 
is linear with the particle position) term with opposite sign in both planes. The coefficients are linked to 
the Laslett coefficients usually used in the literature [15], and they are the same as the ones obtained by 
Yokoya [16] in the case of a resistive beam pipe under some assumptions (see Section 4.2). General 
formulae exist for the “real” tune shifts of coasting or bunched beams in pipes with different geometries, 
considering both the “ac” and “dc” magnetic parts and can be found for instance in Refs. [1,2]. 

4.2  Wake fields and impedances 

If the wall of the beam pipe is perfectly conducting and smooth, as it was the case in the previous section, 
a ring of negative charges is formed on the walls of the beam pipe where the electric field ends, and these 
induced charges travel at the same pace with the particles, creating the so-called “image” (or induced) 
current, which leads to real tune shifts. However, if the wall of the beam pipe is not perfectly conducting 
or contains discontinuities, the movement of the induced charges will be slowed down, thus leaving 
electromagnetic fields (which are proportional to the beam intensity) mainly behind: this is why these 
electromagnetic fields are called wake fields. The latter will create complex tune shifts leading to 
instabilities (see Section 4.3). What needs to be computed are the wake fields at the distance 

€ 

z = s −υ t  
behind the source particle (which is at position 

€ 

ssource =υ t ; with this convention, one has 

€ 

z < 0) and their 
effects on the test or witness particles that compose the beam. The computation of these wake fields is 
quite involved and two fundamental approximations are introduced: 
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1) The rigid-beam approximation: The beam traverses a piece of equipment rigidly, i.e. the wake field 
perturbation does not affect the motion of the beam during the traversal of the impedance. The 
distance 

€ 

z  of the test particle behind some source particle does not change. 
2) The impulse approximation: As the test particle moves at the fixed velocity 

€ 

υ = β c

 

through a 
piece of equipment, the important quantity is the impulse (and not the force) given by 
 

   

€ 

Δ
 p x , y ,z( ) = dt

 
F x , y ,s= z + β c t , t( )

−∞

+∞

∫ = dt e
 
E +  υ ×

 
B ( )

−∞

+∞

∫ ,
 

(8) 

 
where the arrow above a letter indicates that it is a vector. Starting from the four Maxwell equations for a 
particle in the beam, it can be shown that for a constant 

€ 

β  (which does not need to be 1) [4]  
 

 
  

€ 

 
∇ × Δ

 p x , y ,z( ) = 0,
 

(9) 
 
which is known as Panofsky-Wenzel theorem. This relation is very general, as no boundary conditions 
have been imposed. Only the two fundamental approximations have been made. Another important 
relation can be obtained when 

€ 

β = 1 , taking the divergence of the impulse, which is 
 

 
  

€ 

 
∇ ⊥ . Δ

 p ⊥ = 0.
 

(10) 
 
 Considering the case of a cylindrically symmetric chamber (using the cylindrical coordinates 

€ 

r , 

€ 

θ , 

€ 

z), 
yields the following three equations from Panofsky-Wenzel theorem  
 

 

€ 

1
r

∂Δpz
∂ϑ

 

 
 

 

 
 =

∂Δpϑ
∂z

,
          

€ 

∂Δpr
∂z

=
∂Δpz
∂r

,
          

€ 

∂ r Δpϑ( )
∂ r

=
∂Δpr
∂θ

.
 

(11) 

 
The fourth relation when 

€ 

β = 1  writes
 

 

€ 

∂ r Δpr( )
∂ r

= −
∂Δpθ
∂θ

.
 

(12) 

 
 Consider now as a source charge density a macro-particle of charge 

€ 

Q = Nb e  moving along the pipe 
(in the 

€ 

s-direction) with an offset 

€ 

r = a  in the 

€ 

ϑ = 0  direction and with velocity 

€ 

υ = β c  
 

 

€ 

ρ r,ϑ , s ; t( ) =
Q
a
δ r− a( ) δ p ϑ( ) δ s−υ t( )

=
Qm cos mϑ( )

π a m +1 1+δ m 0( )
δ r− a( ) δ s−υ t( )

m= 0

∞

∑ = ρm
m= 0

∞

∑ , 
(13) 

 
with   

€ 

 
J m = ρm

 
υ , where 

€ 

Qm =Q a m  and 

€ 

δ  is the Dirac function. In this case the whole solution can be 
written as, for 

€ 

m ≥ 0 and 

€ 

β = 1  (with 

€ 

q  the charge of the test particle and 

€ 

L  the length of the structure) 
 

 

€ 

υ Δps r ,θ , z( ) = Fs ds
0

L

∫ = − q Q am r m cosmθ ′ W m z( ) ,
 

 

 

€ 

υ Δpr r ,θ , z( ) = Fr ds
0

L

∫ = − q Q am m r m−1 cosmθ Wm z( ) ,
 

(14) 
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€ 

υ Δpθ r ,θ , z( ) = Fθ ds
0

L

∫ = q Q am m r m−1 sinmθ Wm z( ) .
 

 
The function 

€ 

Wm z( )  is called the transverse wake function (whose unit is 

€ 

V C−1 m−2m ) and 

€ 

′ W m z( )  is called 
the longitudinal wake function (whose unit is 

€ 

V C−1 m−2m+1 ) of azimuthal mode 

€ 

m . They describe the 
shock response of the vacuum chamber environment to a 

€ 

δ –function beam which carries an 

€ 

m th moment. 
The integrals (on the left) are called wake potentials. The longitudinal wake function for 

€ 

m = 0 and 
transverse wake function for 

€ 

m = 1 are therefore given by 
 

 

€ 

′ W 0 z( ) = −
1

q Q
Fs ds

0

L

∫ = −
1
Q

Es ds
0

L

∫ ,
 

 

  (15) 

 

€ 

W1 z( ) = −
1

q Q a
Fx ds

0

L

∫ = −
1
Q a

Ex − υ By( ) ds
0

L

∫ .
 

 
The Fourier transform of the wake function is called the impedance. The idea of representing the 

accelerator environment by an impedance was introduced by Sessler and Vaccaro [17]. As the 
conductivity, permittivity and permeability of a material depend in general on frequency, it is usually 
better (or easier) to treat the problem in the frequency domain, i.e. compute the impedance instead of the 
wake function. It is also easier to treat the case 

€ 

β ≠ 1 . Then, an inverse Fourier transform is applied to 
obtain the wake function in the time domain. The different relations linking the wake functions and the 
impedances are given by (with 

€ 

k =ω /υ , 

€ 

ω = 2 π f  with 

€ 

f  the frequency, and 

€ 

j  the imaginary unit) 
 

 

€ 

Zm
// ω( ) = ′ W m z( ) e j k z dz

υ
−∞

+∞

∫ = ′ W m t( ) e j k s e − jω t dt
−∞

+∞

∫ ,
 

 

 

€ 

Zm
⊥ ω( ) = − j Wm z( ) e j k z dz

υ
−∞

+∞

∫ = − j Wm t( ) e j k s e − jω t dt
−∞

+∞

∫ .
 

 

  (16) 

 

€ 

′ W m z( ) =
1
2π

Zm
// ω( ) e − j k z dω

−∞

+∞

∫ =
1
2π

Zm
// ω( ) e − j k s e jω t dω

−∞

+∞

∫ ,
 

 

 

€ 

Wm z( ) =
j
2π

Zm
⊥ ω( ) e − j k z dω

−∞

+∞

∫ =
j
2π

Zm
⊥ ω( ) e − j k s e jω t dω

−∞

+∞

∫ .
 

 
The unit of the longitudinal impedance 

€ 

Zm
// ω( )  is 

€ 

Ω m−2m  while the unit of the transverse impedance 

€ 

Zm
⊥ ω( )  is 

€ 

Ω m−2m+1 . Furthermore, two important properties of impedances can be derived. The first is a 
consequence of the fact that the wake function is real, which leads to 
 

 

€ 

Zm
// ω( )[ ]

*
= Zm

// − ω( ) ,
          

€ 

− Zm
⊥ ω( )[ ]

*
= Zm

⊥ − ω( ) ,
 

(17) 
 
where 

€ 

*  stands for the complex conjugate. The second is a consequence of Panofsky-Wenzel theorem 
 

 

€ 

Zm
// ω( ) = k Zm

⊥ ω( ) .
 

(18) 
 



4-8 4  Impedance and collective effects [Ref. p. 4-37 

 Landolt-Börnstein 
 New Series I/21B1 

Another interesting property of the impedances is the directional symmetry (Lorentz reciprocity theorem): 
the same impedance is obtained from both sides if the entrance and exit are the same. 
 A more general definition of the impedances (still for a cylindrically symmetric structure) is the 
following 

 

€ 

Zm
// ω( ) = −

1
Qm
2 dV Em

// Jm
*∫ ,

          

€ 

Zm
⊥ ω( ) = −

1
k Qm

2 dV Em
// Jm

*∫ ,
 

(19) 

 
where 

€ 

dV = r dr dϑ ds . For the previous ring-shape source it yields 
 

 

€ 

Z0
// ω( ) = −

1
Q0

ds Es r = a( ) e j k s

0

L

∫ ,
 

 

  (20) 

 

€ 

Z1
⊥ ω( ) = −

L
k π aQ1

dϑ Es r = a ,ϑ ,s( ) cosϑ e jk s

0

2π

∫ .
 

 
 The situation is more involved in the case of non axi-symmetric structures (due in particular to the 
presence of the quadrupolar wake field, already discussed in Section 4.1) and for 

€ 

β ≠ 1 , as in this case 
some electromagnetic fields also appear in front of the source particle. In the case of axi-symmetric 
structures, a current density with some azimuthal Fourier component creates electromagnetic fields with 
the same azimuthal Fourier component. In the case of non axi-symmetric structures, a generalized notion 
of impedances was introduced by Tsutsui [18], where a current density with some azimuthal Fourier 
component may create an electromagnetic field with various different azimuthal Fourier components. If 
the source particle 1 and test particle 2 have the same charge 

€ 

q , and in the ultra-relativistic case, the 
transverse wake potentials can be written (taking into account only the linear terms with respect to the 
source and test particles and neglecting the constant, coupling and high order terms) [19] 
 

 

€ 

Fx ds
0

L

∫ = − q2 x1 Wx
driving z( ) − x2 W detuning z( )[ ] ,

 
 

  (21) 

 

€ 

Fy ds
0

L

∫ = − q2 y1 Wy
driving z( ) + y2 W

detuning z( )[ ] ,
 

 
where the driving term is used here instead of dipolar and detuning instead of quadrupolar (or incoherent). 
In the frequency domain, Eq. (21) leads to the following generalized impedances 
 

 

€ 

Zx Ω[ ] = x1 Zx
driving − x2 Z

detuning ,
 

 
  (22) 

 

€ 

Zy Ω[ ] = y1 Zy
driving + y2 Z

detuning .
  

Note that in the case 

€ 

β ≠ 1, another quadrupolar term is found [20]. 
 From Eqs. (21) and (22), the procedure to simulate or measure the driving and detuning contributions 
can be deduced. In the time domain, using some time-domain electromagnetic code like for instance CST 
Particle Studio [21], the driving and detuning contributions can be disentangled. A first simulation with 

€ 

x2 = 0

 
gives the dipolar part while a second one with 

€ 

x1 = 0

 
provides the quadrupolar part. It should be 

noted that if the simulation is done with

€ 

x1 = x2 , only the sum of the dipolar and quadrupolar parts is 
obtained. The situation is more involved in the frequency domain, which is used for instance for 
impedance measurements on a bench [22]. Two measurement techniques can be used to disentangle the 
transverse driving and detuning impedances, which are both important for the beam dynamics (this can 
also be simulated with codes like Ansoft-HFSS [23]). The first uses two wires excited in opposite phase 
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(to simulate a dipole), which yields the transverse driving impedance only. The second consists in 
measuring the longitudinal impedance, as a function of frequency, for different transverse offsets using a 
single displaced wire. The sum of the transverse driving and detuning impedances is then deduced 
applying the Panofsky-Wenzel theorem in the case of top/bottom and left/right symmetry [24]. 
Subtracting finally the transverse driving impedance from the sum of the transverse driving and detuning 
impedances obtained from the one-wire measurement yields the detuning impedance only. If there is no 
top/bottom or left/right symmetry the situation is more involved and a procedure is being checked at the 
moment. 
 Both longitudinal and transverse resistive-wall impedances were already calculated forty years ago by 
Laslett, Neil and Sessler [25]. However, a new physical regime was revealed by the LHC collimators. A 
small aperture paired with a large wall thickness asks for a different physical picture of the transverse 
resistive-wall effect from the classical one. The first unstable betatron line in the LHC is around 8 kHz, 
where the skin depth for graphite (whose measured isotropic DC resistivity is 10 µΩm) is 1.8 cm. It is 
smaller than the collimator thickness of 2.5 cm. Hence one could think that the resistive thick-wall 
formula would be about right. In fact it is not. The resistive impedance is about two orders of magnitude 
lower at this frequency. A number of papers have been published on this subject in the last few years 
using the field matching technique starting from the Maxwell equations and assuming a circular 
geometry [26-30]. Recently, new results have been also obtained for flat chambers, extending the 
(constant) Yokoya factors to frequency and material dependent ones [31], as was already found with 
some simplified kicker impedance models [32,33]. Note that the material resistivity may vary with the 
magnetic field through the magneto-resistance and the surface impedance can also increase due to the 
anomalous skin effect [34 and references therein].  
 In the case of a cavity, an equivalent RLC circuit can be used with 

€ 

Rs
 

the longitudinal shunt 
impedance, 

€ 

C  the capacity and 

€ 

L  the inductance. In a real cavity, these three parameters cannot be 
separated easily and some other related parameters are used, which can be measured directly such as the 
resonance (angular) frequency 

€ 

ω r = 1 / L C , the quality factor 

€ 

Q = Rs C / L = Rs / (L ω r ) = Rs C ω r  and the 
damping rate 

€ 

α =ω r / (2Q ) . When 

€ 

Q = 1, the resonator impedance is called “broad-band”, and this model 
was extensively used in the past in many analytical computations. The longitudinal and transverse 
impedances and wake functions (with 

€ 

R⊥
 
the transverse shunt impedance) are given by [35] (see Fig. 4.3) 

 

 

€ 

Zm
// ω( ) =

Rs

1+ j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

,
          

€ 

Wm
// t( ) =

ωr Rs

Q
e −α t cos ω r t( ) − α

ω r
sin ω r t( )

 

 
 

 

 
 ,

 
 

  (23) 

 

€ 

Zm
⊥ ω( ) =

ωr

ω
R⊥

1+ j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

,
    

€ 

Wm
⊥ t( ) =

ωr
2 R⊥
Q ω r

e −α t sin ω r t( ) ,   

€ 

ω r =ωr 1− 1
4Q2 . 

 
 Finally, all the transverse impedances (dipolar or driving and quadrupolar or detuning) should be 
weighted by the betatron function at the location of the impedances, as this is what matters for the effect 
on the beam, i.e. for the beam dynamics. 
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Fig. 4.3. Longitudinal and transverse impedances and wake functions, in the case of resonator impedances 
(

€ 

fr = 1GHz ,

€ 

Q = 100,

€ 

Rs = 20 Ω  and 

€ 

R⊥ = 20MΩ/m). 

4.3  Coherent instabilities 

The wake fields can influence the motion of trailing particles, in the longitudinal and in one or both 
transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary 
effects such as excessive heating of sensitive components at or near the chamber wall. Therefore, in 
practice the elements of the vacuum chamber should be designed to minimise the self-generated 
electromagnetic fields. For example, chambers with different cross-sections should be connected with 
tapered transitions; bellows need to be separated from the beam by shielding; plates should be grounded 
or terminated to avoid reflections, high-resistivity materials should be coated with a thin layer of very 
good conductor (such as copper) when possible, etc. 

Two approaches are usually used to deal with collective instabilities. One starts from the single-
particle equation while the other solves the Vlasov equation, which is nothing else but an expression for 
the Liouville conservation of phase-space density seen by a stationary observer. In the second approach, 
the motion of the beam is described by a superposition of modes, rather than a collection of individual 
particles. The detailed methods of analysis in the two approaches are different, the particle representation 
is usually conveniently treated in the time domain, while in the mode representation the frequency 
domain is more convenient, but in principle they necessarily give the same final results. The advantage of 
the mode representation is that it offers a formalism that can be used systematically to treat the instability 
problem. 

The first formalism was used by Courant and Sessler to describe the transverse coupled-bunch 
instabilities [36]. In most accelerators, the RF acceleration mechanism generates an azimuthal non-
uniformity of the particle density and consequently the work of Laslett, Neil and Sessler for continuous 
beams [25] is not applicable in the case of bunched beams. Courant and Sessler studied the case of rigid 
(point-like) bunches, i.e. bunches oscillating as rigid units, and they showed that the transverse 
electromagnetic coupling of bunches of particles with each other can lead (due to the imperfectly 
conducting vacuum chamber walls) to a coherent instability. The physical basis of the instability is that in 
a resistive vacuum tank, fields due to a particle decay only very slowly in time after the particle has left 
(this leads to a long-range interaction). The decay can be so slow that when a bunch returns after one (or 
more) revolutions it is subject to its own residual wake field which, depending upon its phase relative to 
the wake field, can lead to damped or anti-damped transverse motion. For 

€ 

M  equi-populated equi-spaced 
bunches, 

€ 

M  coupled-bunch mode numbers exist (

€ 

n = 0,1, ...,M − 1), characterized by the integer number of 
waves of the coherent motion around the ring. Therefore the coupled-bunch mode number resembles the 
azimuthal mode number for coasting beams, except that for coasting beams there is an infinite number of 
modes. The bunch-to-bunch phase shift 

€ 

Δφ  is related to the coupled-bunch mode number 

€ 

n  by 

€ 

Δφ = 2 π n / M .  
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Pellegrini [37] and, independently, Sands [38,39] then showed that short-range wake fields (i.e. fields 
that provide an interaction between the particles of a bunch but have a negligible effect on subsequent 
passages of the bunch or of other bunches in the beam) together with the internal circulation of the 
particles in a bunch can cause internal coherent modes within the bunch to become unstable. The 
important point here is that the betatron phase advance per unit of time (or betatron frequency) of a 
particle depends on its instantaneous momentum deviation (from the ideal momentum) in first order 
through the chromaticity and the slip factor. Considering a non-zero chromaticity couples the betatron and 
synchrotron motions, since the betatron frequency varies around a synchrotron orbit. The betatron phase 
varies linearly along the bunch (from the head) and attains its maximum value at the tail. The total 
betatron phase shift between head and tail is the physical origin of the head tail instability. The head and 
the tail of the bunch oscillate therefore with a phase difference, which reduces to rigid-bunch oscillations 
only in the limit of zero chromaticity. A new (within-bunch) mode number 

€ 

m = ...,−1, 0,1, ..., also called 
head-tail mode number, was introduced. This mode describes the number of betatron wavelengths (with 
sign) per synchrotron period. It can be obtained by superimposing several traces of the directly observable 
average displacement along the bunch at a particular pick-up. The number of nodes is the mode number 

€ 

m  (see Figs. 4.4 and 4.5). 
 The work of Courant and Sessler, or Pellegrini and Sands, was done for particular impedances and 
oscillation modes. Using the Vlasov formalism, Sacherer unified the two previous approaches, 
introducing a third mode number 

€ 

q = ...,−1, 0,1, ..., called radial mode number, which comes from the 
distribution of synchrotron oscillation amplitudes [40,41]. The advantage of this formalism is that it is 
valid for generic impedances and any high order head-tail modes. This approach starts from a distribution 
of particles (split into two different parts, a stationary distribution and a perturbation), on which Liouville 
theorem is applied. After linearization of the Vlasov equation, one ends up with Sacherer’s integral 
equation or Laclare’s eigenvalue problem to be solved [41]. Because there are two degrees of freedom 
(phase and amplitude), the general solution is a twofold infinity of coherent modes of oscillation 
(

€ 

m, q = ...,−1, 0,1, ...). At sufficiently low intensity, only the most coherent mode (largest value for the 
coherent tune shift) is generally considered, leading to the classical Sacherer’s formulae in both transverse 
and longitudinal planes. Note that contrary to the space charge case, these tune shifts are now complex, 
the imaginary part being linked to the instability growth rate. For protons a parabolic density distribution 
is generally assumed and the corresponding oscillation modes are sinusoidal. For electrons, the 
distribution is usually Gaussian, and the oscillation modes are described in this case by Hermite 
polynomials. In reality, the oscillation modes depend both on the distribution function and the impedance, 
and can only be found numerically by solving the (infinite) eigenvalue problem. However, the mode 
frequencies are usually not very sensitive to the accuracy of the eigenfunctions. Similar results are 
obtained for the longitudinal plane. 
 It is worth mentioning that the CERN ISR suffered from a beam instability brought about by beams 
having different revolution frequencies. They could be in the same vacuum chamber or coupled by the 
beam-beam effect. The name of "overlap knock-out" [42] has been given to this phenomenon by which 
the stack is subjected to transverse kicks from the bunches. This produces blow-up of the stacked beam 
when the longitudinal frequency spectrum of the bunches overlaps with the betatron frequency spectrum 
of the coasting stacked beam. Similar problems limit the energy range of RHIC and proton lead in 
LHC [43]. 

4.3.1  Longitudinal 

The most fundamental longitudinal instability encountered in circular accelerators is called the Robinson 
instability. The (Radio-Frequency) RF frequency accelerating cavities in a circular accelerator are tuned 
so that the resonant frequency of the fundamental mode is very close to an integral multiple of the 
revolution frequency of the beam. This necessarily means that the wake field excited by the beam in the 
cavities contains a major frequency component near a multiple of the revolution frequency. The exact 
value of the resonant frequency relative to the multiple of the revolution frequency is of critical 
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importance for the stability of the beam. Above the transition energy, the beam will be unstable if the 
resonant frequency is slightly above it and stable if slightly below. This is the opposite below transition. 
This instability mechanism was first analyzed by Robinson [44]. Physically, the Robinson instability 
comes from the fact that the revolution frequency of an off-momentum beam is not given by the on-
momentum revolution frequency, but by a quantity slightly different, depending on both the slip factor 
and the energy deviation. 
 Let’s assume in the following that the Robinson criterion is met. A bunch is longitudinally stable if 
the longitudinal profile observed at a wall-current monitor is constant turn after turn and it is unstable if 
the longitudinal profile is not constant turn after turn. In the case of instability, the way the longitudinal 
profile oscillates gives some information about the type of instabilities. This was studied in detail by 
Laclare [41], who explained theoretically such pictures of “longitudinal (single-bunch) instability” 
starting from the single-particle longitudinal signal at a pick-up electrode (assuming infinite bandwidth). 
The current signal induced by the test particle is a series of impulses delivered on each passage 
 

 

€ 

sz t,ϑ( ) = e δ t − τ − ϑ
Ω0

−
2 k π
Ω0

 

 
 

 

 
 

k=−∞

k=+∞

∑ ,
 

(24) 

 
where 

€ 

τ  is the time interval between the passage of the synchronous particle and the test particle, for a 
fixed observer at azimuthal position 

€ 

ϑ  and 

€ 

Ω0  is the angular revolution frequency. In the frequency 
domain, the single-particle spectrum is therefore a line spectrum at frequencies 

€ 

ω pm = pΩ0 + mω s0, where 

€ 

ω s0 is the small-amplitude synchrotron frequency. Around every harmonic of the revolution frequency 

€ 

pΩ0 , there is an infinite number of synchrotron satellites m (it is different from the one used in Section 
4.2!), whose spectral amplitude is given by the Bessel function 

€ 

Jm p Ω0 ˆ τ ( ) , where 

€ 

ˆ τ  is the synchrotron 
amplitude. The spectrum is centred at the origin and because the argument of the Bessel functions is 
proportional to 

€ 

ˆ τ , the width of the spectrum behaves like 

€ 

ˆ τ −1. Applying the Vlasov equation, linearizing 
it, and studying the effect of the impedance on the unperturbed distribution leads to the potential-well 
effect: a new fixed point is reached, with a new synchronous phase, a new effective voltage, a new 
synchrotron frequency, a new bunch length and a new momentum spread, which all depend on intensity. 
Studying a perturbation on top of the new stationary distribution, one ends up at low intensity, i.e. 
considering independently the modes 

€ 

m  (which is valid up to a certain intensity), with the following 
eigenvalue system 
 

 

€ 

Δωcmq σ mq l( ) = Klp
m σ mq p( )

p=−∞

p=+∞

∑ ,
   

with   

€ 

Δωcmq =ωcmq − m ωs ,
 

(25) 

 
where  
 

 

€ 

Klp
m = −

2π Ib m ωs

Ω0
2 ˆ V T h cosφs

j
Zl p( )

p
dg0

d ˆ τ 
Jm pΩ0 ˆ τ ( ) Jm l Ω0 ˆ τ ( ) d ˆ τ 

ˆ τ = 0

ˆ τ =+∞

∫ .
 

(26) 

 
Here, 

€ 

Δω cmq is the coherent complex synchrotron frequency shift to be determined, 

€ 

Ib = Nb e Ω0 / 2π  is 
the bunch current, 

€ 

ω s  ,

€ 

ˆ V T  and 

€ 

φs  are the new synchrotron frequency, total votal voltage and synchronous 
phase (taking into account the potential-well distortion), 

€ 

Zl = Z0
//  is the longitudinal impedance, 

€ 

g0  is the 
longitudinal amplitude density function and 

€ 

h  the RF harmonic number. The procedure to obtain first 
order exact solutions, with realistic modes and a general interaction, thus consists of finding the 
eigenvalues and eigenvectors of the infinite complex matrix whose elements are given by Eq. (26). The 
result is an infinite number of modes 

€ 

m q  (

€ 

−∞< m , q <+∞ ) of oscillation. To each mode, one can associate 
a coherent frequency shift 

€ 

Δω cmq =ω cmq − m ω s  (which is the qth eigenvalue), a coherent spectrum 

€ 

σ mq p( )  (which is the qth eigenvector) and a perturbation distribution 

€ 

gmq ˆ τ ( ) . For numerical reasons, 
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the matrix needs to be truncated, and thus only a finite frequency domain is explored. For the case of the 
parabolic amplitude distribution and a constant inductive impedance (which leads to real tune shifts only 
and therefore no instability), the signal at the pick-up electrode shown for several superimposed turns is 
depicted on Fig. 4.4. In the case of a complex impedance, the real part will lead in addition to a growing 
amplitude with an associated instability rise-time. The spectrum of mode mq is peaked at 

€ 

fq ≈ (q + 1) / (2τ b ) and extends 

€ 

~ ± τ b
−1 , where 

€ 

τ b  is the full bunch length (in second), 

€ 

q ≡ m + 2 k  and 

€ 

0 ≤ k < +∞ . It can be seen from Fig. 4.4 that there are q nodes on these “standing-wave” patterns. The 
longitudinal signal at the pick-up electrode is given by 
 

 

€ 

Smq t,ϑ( ) = Sz 0 t,ϑ( ) + ΔSzmq t,ϑ( ) ,
 

(27) 
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Sz 0 t ,ϑ( ) = 2π Ib σ 0 p( ) e j pΩ0 t e− j pϑ

p=−∞

p=+∞

∑ ,
         

€ 

σ 0 p( ) = J0 pΩ0 ˆ τ ( ) g0 ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ =+∞

∫ ,
 

(28) 
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ΔSzmq t ,ϑ( ) = 2π Ib σ mq p( ) e j p Ω0 + mωs + Δωcmq( ) t e− j pϑ

p=−∞

p=+∞

∑ .
 

(29) 

 
 
 
 
 

 
 

 
Fig. 4.4. Signal at the pick-up electrode for three different modes shown for several superimposed turns (the red line 
corresponds to one particular turn), for the case of the parabolic amplitude distribution and a constant inductive 
impedance (exhibiting therefore no growing oscillations!). 
 
 Finding the eigenvalues and eigenvectors of a complex matrix by computer can be difficult in some 
cases, and a simple approximate formula for the eigenvalues is useful in practice to have a rough estimate. 
This is known as Sacherer’s (longitudinal) formula [40]. Sacherer’s formula is also valid for coupled-
bunch instability with M equally-populated equally-spaced bunches, assuming multi-bunch modes with 
only one type of internal motion. In the case of gaps between bunch trains, a time-domain approach is 
usually better suited. 
 As the bunch intensity increases, the different longitudinal modes can no longer be treated separately 
and the situation is more involved. In the longitudinal plane, the microwave instability for coasting beams 
is well understood. It leads to a stability diagram, which is a graphical representation of the solution of the 
dispersion relation (taking into account the momentum spread) depicting curves of constant growth rates, 
and especially a threshold contour in the complex plane of the driving impedance (see Section 4.4) [45]. 
When the real part of the driving impedance is much greater than the modulus of the imaginary part, a 
simple approximation, known as the Keil-Schnell (or circle) stability criterion, may be used to estimate 
the threshold curve [46]. For bunched beams, it has been proposed by Boussard to use the coasting-beam 
formalism with local values of bunch current and momentum spread [47]. A first approach to explain this 
instability, without coasting-beam approximations, has been suggested by Sacherer through Longitudinal 
Mode-Coupling (LMC) [48]. The equivalence between LMC and microwave instabilities has been 
pointed out by Sacherer and Laclare [41] in the case of broad-band driving resonator impedances, 
neglecting the potential-well distortion. Using the mode-coupling formalism for the case of a proton 
bunch interacting with a broad-band resonator impedance, and whose length is greater than the inverse of 
half the resonance frequency, new formulae have been derived taking into account the potential well-
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distortion due to both space charge and broad-band resonator impedances [49,50]. It is found in particular 
that due to the potential-well distortion, the beam is more stable below transition than above. 
Experimentally, the most evident signature of the LMC instability is the intensity-dependent longitudinal 
beam emittance blow-up to remain just below the threshold [51]. 

4.3.2  Transverse 

A similar analysis as the one done for the longitudinal plane can be done in the transverse plane [41]. 
Following the same procedure, the horizontal coherent oscillations (over several turns) of a “water-bag” 
bunch (i.e. with constant longitudinal amplitude density) interacting with a constant inductive impedance 
are shown in Fig. 4.5.  
 
 

 

 
 
Fig. 4.5. Transverse signal at the pick-up electrode for four different modes shown for several superimposed turns, 
for the case of the “water-bag” bunch (i.e. with constant longitudinal amplitude density) and a constant inductive 
impedance. In the present example, the total phase shift between the head and the tail is given by 

€ 

χ =ωξ τ b = 10  (see 
below). 
 
 The main difference with the longitudinal plane is that there is no effect of the stationary distribution 
and the bunch spectrum is now centered at the chromatic frequency 

€ 

fξ = Qx0 f0ξ /η , where 

€ 

f0 is the 
revolution frequency and 

€ 

ξ  is the relative chromaticity. The sign of the chromatic frequency is very 
important and to avoid the head-tail instability (of mode 0) it should be slightly positive, meaning that the 
chromaticity should be negative below transition and positive above. Sacherer’s formula is also valid for 
coupled-bunch instability with M equally-populated equally-spaced bunches, assuming multi-bunch 
modes with only one type of internal motion (i.e. the same head-tail mode number). This analysis was 
extended in Ref. [52] to include also the coupling between the modes (and the possibility to have different 
head-tail modes in the different bunches). In the case of gaps between bunch trains, a time-domain 
approach is usually better suited. 
 At low intensity (i.e. below a certain intensity threshold), the standing-wave patterns (head-tail modes) 
are treated independently. This leads to instabilities where the head and the tail of the bunch exchange 
their roles (due to synchrotron oscillation) several times during the rise-time of the instability. The 
(approximate) complex transverse coherent betatron frequency shift of bunched-beam modes is given by 
Sacherer’s formula for round pipes [40]. For flat chambers a quadrupolar effect (see Section 4.2) has to be 
added to obtain the real part of the coherent tune shift, which explains why the horizontal coherent tune 
shift is zero in horizontally flat chambers (of good conductors). As an example, a head-tail instability with 
mode 

€ 

m = 10  is shown in Fig. 4.6(left). It is worth mentioning that there is also a head-tail instability in 
the longitudinal plane. The longitudinal head-tail instability, first suggested by Hereward [53] and 
possibly observed at the CERN SPS [54] results from the fact that the slip factor is not strictly a constant: 
it depends on the instantaneous energy error just as the betatron frequency does. The longitudinal beam 
distribution then acquires a head-tail phase, and instability may arise as a result. 
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Fig. 4.6. (Left) Signal from a radial beam position monitor during 20 consecutive turns observed in the CERN PS at 
1.4 GeV kinetic energy in 1999. Time scale: 20 ns/div. (Right) Fast instability observed in the CERN PS near 
transition (~6 GeV total energy) in 2000. Single-turn signals from a wide-band pick-up. From top to bottom: Σ, Δx, 
and Δy. Time scale: 10 ns/div. The head of the bunch is stable and only the tail is unstable in the vertical plane. The 
particles lost at the tail of the bunch can be seen from the hollow in the bunch profile. 
 
 As the bunch intensity increases, the different head-tail modes can no longer be treated separately. In 
this regime, the wake fields couple the modes together and a wave pattern travelling along the bunch is 
created: this is the Transverse Mode Coupling Instability (TMCI). The TMCI for circular accelerators has 
been first described by Kohaupt [55] in terms of coupling of Sacherer’s head-tail modes. This extended to 
the transverse motion, the theory proposed by Sacherer to explain the longitudinal microwave instability 
through coupling of the longitudinal coherent bunch modes. The TMCI is the manifestation in 
synchrotrons of the Beam Break-Up (BBU) mechanism observed in linacs. The only difference comes 
from the synchrotron oscillation, which stabilizes the beam in synchrotrons below a threshold intensity by 
swapping the head and the tail continuously. In fact, several analytical formalisms exist for fast 
(compared to the synchrotron period) instabilities, but the same formula is obtained (within a factor 
smaller than two) from five, seemingly diverse, formalisms in the case of a broad-band resonator 
impedance [56]: (i) Coasting-beam approach with peak values, (ii) Fast blow-up, (iii) BBU (for 0 
chromaticity), (iv) Post head-tail, and (v) TMCI with 2 modes in the “long-bunch” regime (for 0 
chromaticity). Two regimes are indeed possible for the TMCI according to whether the total bunch length 
is larger or smaller than the inverse of twice the resonance frequency of the impedance. The simple 
(approximate) formula reveals the scaling with the different parameters. In particular it can be seen that 
the instability does not disappear at high energy but saturates like the slip factor (what is important is not 
the energy but the distance from the transition energy). This means that the TMCI intensity threshold can 
be raised by changing the transition energy, i.e. by modifying the optics. Furthermore, the intensity 
threshold increases with the resonance frequency (as high-order head-tail modes will couple), with 
longitudinal emittance and with chromaticity. Note that the coherent synchrobetatron resonances, 
important in large machines, are not discussed here. This was checked with the MOSES code [57], which 
is a program computing the coherent bunched-beam mode. Below is a comparison between the MOSES 
code and the HEADTAIL code [58], which is a tracking code simulating single-bunch phenomena, in the 
case of a LHC-type single bunch at SPS injection [59]. As can be seen from Fig. 4.7, a very good 
agreement between the two was found. For a general impedance (i.e. not a resonator impedance) the 
situation is more involved and one should rely on HEADTAIL simulations. In the case of flat chambers, 
the intensity threshold is higher in one plane than in the other and linear coupling can be used to raise the 
TMCI intensity threshold [60]. Note finally that with many bunches the TMCI intensity threshold can be 
considerably reduced [52]. 
 It is worth mentioning also all the work done for the TMCI in LEP, as Chin’s work (with MOSES) 
came later. It was proposed to cure the TMCI with a reactive feedback that would prevent the zero mode 
frequency from changing with increasing beam intensity [61]. In Ref. [62,63] a theory of reactive 
feedback has been developed in the two-particle approach and with the Vlasov equation. Theory has 
revealed that the reactive feedback can really appreciably increase the TMCI intensity threshold, which 
was confirmed by simulation [64,65]. On the contrary, the resistive feedback was found to be 
“completely” ineffective as a cure for the TMCI [63]. An action of a feedback on the TMCI intensity 
threshold was later examined experimentally at PEP [66]. It was confirmed that a reactive feedback is 
indeed capable to increase the TMCI intensity threshold. But it turned out unexpectedly that a resistive 
feedback can also increase the TMCI intensity threshold and even more effectively [66]. In Ref. [67], an 
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attempt was made to develop an advanced transverse feedback theory capable to elucidate the conditions 
at which the resistive or reactive or some intermediate feedback can cure the TMCI. Positive chromaticity 
above transition helps, but depending on the coupling impedance, beam stability may require a large 
value of the chromaticity either unattainable or which reduces the beam lifetime. It was proposed to have 
a negative chromaticity (what is usually avoided), where the zero mode is unstable (by head-tail 
instability) and all the other modes are damped, and stabilise this mode by a resistive feedback, keeping 
the higher order modes stable. In this case, the TMCI intensity threshold could be increased by a factor 3 
to 5 [67]. 
 

 

 
 

 
 

 
 
Fig. 4.7. Comparison between MOSES (in red) and HEADTAIL (in white) in the case of a broad-band resonator 
(Courtesy of Benoit Salvant [59]). Evolution of the real (left) and imaginary (right) parts of the shifts of the 
transverse modes (with respect to the unperturbed betatron tune), normalized by the synchrotron tune, vs. bunch 
intensity. 

4.4  Landau damping 

Several stabilising mechanisms exist which can prevent the previous instabilities from developing. One of 
them is Landau damping, which is a general process that arises when one considers a whole collection of 
particles or other systems, which have a spectrum of resonant frequencies, and interact in some way. In 
accelerators we are usually concerned with an interaction of a kind that may make the beam unstable 
(wake fields), and we want to find out whether or not (and how) the spread of resonant frequencies will 
stabilise it. If the particles have a spread in their natural frequencies, the motion of the particles can lose 
its coherency. In order to understand the physical origin of this effect, let us first consider a simple 
harmonic oscillator, which oscillates in the 

€ 

x -direction with its natural frequency [3]. Let this oscillator 
be driven, starting at time t = 0, by a sinusoidal force. The equation of motion is  
 

 

€ 

˙ ̇ x +ωx
2 x = f cos ωc t( ) ,

 
(30) 

 
where a dot stands for derivative with respect to time and with 

€ 

x (0) = 0 and 

€ 

˙ x (0) = 0 . The solution is 
 

 

€ 

x t > 0( ) = −
f

ωc
2 − ωx

2 cos ωc t( ) − cos ωx t( )[ ] =
f

2ωx0

sin ωx0 t( )
sin ωc −ωx( ) t / 2[ ]

ωc −ωx( ) / 2
.
 

(31) 
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Consider now an ensemble of oscillators (each oscillator represents a single particle in the beam) which 
do not interact with each other and have a spectrum of natural frequency 

€ 

ω x  with a distribution 

€ 

ρx (ω x )  
normalised to unity. Let’s assume first that the origin of the betatron frequency spread is not specified: an 
externally given beam frequency spectrum is supposed. Now starting at time t = 0, subject this ensemble 
of particles to the driving force 

€ 

f cos ω c t( )  with all particles starting with initial conditions 

€ 

x (0) = 0 and 

€ 

˙ x (0) = 0 . We are interested in the ensemble average of the response, which is given by superposition by 
 

 

€ 

x t( ) =
f

2ωx0

cos ωc t( ) P.V.
ρx ωx( )
ωx − ωc

dωx
−∞

+∞

∫ + π ρx ωc( ) sin ωc t( )
 

 

 
 

 

 

 
 
,
 

(32) 

 
where P.V. stands for Principal Value. The sinus term has a definite sign relative to the driving force, 
because 

€ 

ρx ω c( )
 
is always positive. In particular, 

€ 

˙ x  is always in phase with the force, indicating that work 
is being done on the system, which always reacts to the force “resistively”. The Landau damping effect is 
to be distinguish from a “decoherence (also called phase-mixing, or filamentation) effect” that occurs 
when the beam has nonzero initial conditions. Had we included an initial offset, we would have 
introduced two additional terms into the ensemble response, which do not participate in the dynamic 
interaction of the beam particles and are not interesting for our purposes here. In this decoherence effect, 
individual particles continue to execute oscillations of constant amplitude, but the total beam response 

€ 

x  
decreases with time. As mentioned above, work is continuously being done on the system. However, the 
amplitude of 

€ 

x , as given before, does not increase with time. Where did the energy go? The system 
absorbs energy from the driving force indefinitely while holding the ensemble beam response within 
bounds. The stored energy is incoherent in the sense that the energy is contained in the individual 
particles, but it is not to be regarded as heat in the system. This is because the stored energy is not 
distributed more or less uniformly in all particles, but is selectively stored in particles with continuously 
narrowing range of frequencies around the driving frequency. If one observes two particles, one with the 
exciting frequency 

€ 

ω c  and one with a frequency slightly different, at the beginning, they oscillate 
“coherently” (same amplitude and same phase). However, after a while the particle with the exciting 
frequency, being resonantly driven, continues to increase in amplitude as time increases, whereas the 
other particle with a slightly different frequency realizes that its frequency is not the same as the driving 
one and the “beating” phenomenon is observed for this particle. If one considers the phenomenon for a 
time 

€ 

t , the number of particles which still oscillate coherently decreases with time as 

€ 

1 / t , while their 
amplitude increases as 

€ 

t , the net contribution being constant with time. 
 The origins of the frequency spread that leads to Landau damping have not been taken into account till 
now. The case where the frequency spread comes from the longitudinal momentum spread of the beam is 
straightforward (for a coasting beam), because the longitudinal momentum is a constant, which just 
affects the coefficients in the equations of motion of the transverse oscillations, and hence their 
frequencies. It can be dealt with the same method as in the previous sections, i.e. it is the distribution 
function which is important. The same result applies also if one considers a tune spread that is due to a 
non-linearity (e.g. from octupole lenses) in the other plane. However, this result is no longer valid if the 
non-linearity is in the plane of coherent motion. In this case, the steady-state is more involved because the 
coherent motion is then a small addition to the large incoherent amplitudes that make the frequency 
spread, and it is inconsistent to assume that it can be treated as a linear superposition [68]. One needs to 
consider “second order” non-linear terms and the final result is that in this case it is not the distribution 
function which matters but its derivative. Using the Vlasov formalism, this result is recovered more 
straightforwardly. 
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4.4.1  Transverse 

Considering the case of a beam having the same normalized rms beam size 

€ 

σ = ε  in both transverse 
planes, the Landau damping mechanism from octupoles of coherent instabilities, e.g. in the horizontal 
plane, is discussed from the following dispersion relation [9,69] 

 

 

€ 

1= − ΔQcoh
x dJx

Jx= 0

+∞

∫ dJy
Jy= 0

+∞

∫
Jx

∂f Jx ,Jy( )
∂Jx

Qc −Qx Jx ,Jy( ) − m Qs

, (33) 

with 
 

€ 

Qx Jx ,Jy( ) = Q0 + a0 Jx + b0 Jy .  (34) 

Here, 

€ 

Qc  is the coherent betatron tune to be determined, 

€ 

Jx ,y  are the action variables in the horizontal and 
vertical plane respectively, with 

€ 

f ( Jx ,Jy ) the distribution function, 

€ 

ΔQcoh
x  is the horizontal coherent tune 

shift, 

€ 

Qx ( Jx ,Jy ) is the horizontal tune in the presence of octupoles, m is the head-tail mode number, and 

€ 

Qs  
is the small-amplitude synchrotron tune (the longitudinal spread is neglected). 

The nth order distribution function is assumed to be 
 

  (35) 

where a and b are constants to be determined by normalization, and which corresponds to a profile 
extending up to 

€ 

2 n + 3( ) σ . The dispersion relation of Eq. (33) can be re-written as  
 

  (36) 

with 

 

€ 

In c,q( ) = dJx
Jx= 0

1

∫ dJy
Jy= 0

1− Jx

∫
Jx 1− Jx − Jy( )

n−1

q+ Jx +c Jy
, (37) 

             and       (38) 

It is convenient to write Eq. (36) in this way, with the left-hand-side (l.h.s) containing information about 
the beam intensity and the impedance and the right-hand-side (r.h.s) containing information about the 
beam frequency spectrum only. In the absence of frequency spread, the r.h.s. of Eq. (36) is equal to 

€ 

Qc − Q0 −mQs , which is thus given by 

€ 

ΔQcoh
x  (i.e. the l.h.s). Calculation of the l.h.s is now straightforward 

(following Section 4.3): for a given impedance, one only needs to calculate the complex mode frequency 
shift, in the absence of Landau damping. Without frequency spread, the condition for the beam to be 
stable is thus simply 

€ 

Im(ΔQcoh
x ) ≥ 0  (oscillations of the form 

€ 

e jω t  are considered). Once its l.h.s is obtained, 
Eq. (36) can be used to determine the coherent betatron tune 

€ 

Qc  in the presence of Landau damping when 
the beam is at the edge of instability (i.e. 

€ 

Qc  real). However, the exact value of 

€ 

Qc  is not a very useful 
piece of information. The more useful question to ask is under what conditions the beam becomes 
unstable regardless of the exact value of 

€ 

Qc  under these conditions, and Eq. (36) can be used in a reversed 
manner to address this question. To do so, one considers the real parameter 

€ 

Qc − Q0 −mQs  (stability limit) 
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and observes the locus traced out in the complex plane by the r.h.s of Eq. (36), as 

€ 

Qc − Q0 −mQs  is scanned 
form 

€ 

−∞  to 

€ 

+∞ . This locus defines a “stability boundary diagram”. The l.h.s of Eq. (36), a complex 
quantity, is then plotted in this plane as a single point. If this point lies on the locus, it means the solution 
of 

€ 

Qc  for Eq. (36) is real, and this 

€ 

Qc − Q0 −mQs  is such that the beam is just at the edge of instability. If it 
lies on the inside of the locus (the side which contains the origin), the beam is stable. If it lies on the 
outside of the locus, the beam is unstable. The stability diagrams for the 2nd order, 15th order and Gaussian 
distribution functions are plotted in Fig. 4.8 for the case of the LHC at top energy (7 TeV) with maximum 
available octupole strength ( ,  and ). 

The case of a distribution extending up to 6σ (as the 15th order distribution) but with more populated 
tails than the Gaussian distribution has also been considered and revealed a significant enhancement of 
the stable region compared to the Gaussian case [69, see also Fig. 4.8(right)]. This may be the case in 
reality in proton machines due to diffusive mechanisms.  

 

 
 
Fig. 4.8. Stability diagrams (for both positive and negative detunings a0) for the LHC at top energy (7 TeV) with 
maximum available octupole strength: (Left) for the 2nd order (dashed curves), the 15th order (full curves), and the 
Gaussian (dotted curves) distribution; (Right) for the Gaussian distribution (dotted curve) and a distribution with 
more populated tails than the Gaussian (full curve). 
 

It is worth reminding that Landau damping of coherent instabilities and maximization of the dynamic 
aperture are partly conflicting requirements. On the one hand, a spread of the betatron frequencies is 
needed for the stability of the beam coherent motion, which requires nonlinearities to be effective at small 
amplitude. On the other hand, the nonlinearities of the lattice must be minimized at large amplitude to 
guarantee the stability of the single-particle motion. A trade-off between Landau damping and dynamic 
aperture is therefore usually necessary. Note that some work is being done to use the nonlinear optics as a 
path to high intensity, providing “infinite (transverse) Landau damping” [70].  

Finally, in the case of additional space-charge nonlinearities, the stability diagram will be shifted and 
beam stability can be obtained or lost, depending on the coherent tune. The influence of space-charge 
nonlinearities on the Landau damping mechanism of transverse coherent instabilities has first been 
studied by Möhl and Schönauer for coasting and rigid bunched beams [71,72]. It was studied in detail in 
the last few years for higher-order head-tail modes from both theory [73-76] and numerically [77]. 

Note that linear coupling between the transverse planes can also influence the Landau damping 
mechanism [78], leading to a sharing of the Landau damping between the transverse planes, which can 
have a beneficial effect (i.e. stabilising the other plane) or a detrimental effect (i.e. destabilising one or 
two planes, as it was believed to be the case with the Batman instability of the HERA proton ring [79]). 
Furthermore, one has also to be careful with linear coupling as it modifies the transverse 
emittances [80,81]. 
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4.4.2  Longitudinal 

When the bunch is very small inside the RF bucket, the motion of the particles is linear and all the 
particles have the same (unperturbed, maximum) synchrotron frequency 

€ 

ω s0. By increasing the bunch 
length the incoherent synchrotron frequency spread  is increased (the maximum synchrotron frequency 
spread is obtained when the bunch length is equal to the RF bucket length as in this case the synchrotron 
frequency of the particles with the largest amplitude is equal to 0: the synchrotron frequency spread  is 
equal to 

€ 

ω s0 in this case). In the presence of an impedance, the coherent synchrotron frequency of the 
dipole mode , which is equal to the low-intensity synchrotron frequency  without synchrotron 
frequency spread (due to the compensation between the incoherent and coherent tune shifts), moves 
closer and closer to the incoherent band (stable region). The two possible cases are represented in Fig. 4.9 
(using the rigid-bunch approximation), which is similar to what was obtained by Besnier (who considered 
a parabolic distribution function, which introduces some pathologies in the stability diagram due to its 
sharp edge) [82 and references therein]: the case of a capacitive impedance below transition or inductive 
impedance above transition corresponds to  (the coherent synchrotron frequency shift of the dipole 
mode has been written ) and the incoherent synchrotron frequency shift (due to the 
potential-well distortion) is  (and thus ), and the case of a capacitive impedance above 
transition or inductive impedance below transition corresponds to  and  (and thus 

). Motions  are considered, which means that the beam is unstable when  (V is 
called the instability growth rate). The usual case where the resistive part of the impedance is small 
compared to the imaginary part is assumed, i.e. . Beam stability is obtained when  enters 
into the incoherent band. In both cases, the stability limit is reached for , i.e. , which is 
Sacherer’s stability criterion for the dipole mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.9. Evolution of the coherent synchrotron frequency for the dipole mode with respect to the incoherent 
frequency spread (using the rigid-bunch approximation). 
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4.5  Two-stream effects (electron cloud and ions) 

4.5.1  Electron cloud build-up in positron / hadron machines 

The term “electron cloud” is used for describing an accumulation of electrons inside the beam chamber of 
a circular accelerator, in which bunched beams of positively charged particles are accelerated or stored. 
The electron cloud can affect the accelerator operation by causing beam tune shifts, emittance growths 
and instabilities, as well as increases of the vacuum pressure and interference with beam diagnostics 
devices. Most of these effects eventually lead to beam quality degradation and loss. Electrons can be 
initially produced in the vacuum chamber by a number of processes. These electrons are called primary 
because, although some times their number can be sufficiently high to affect the circulating beam, they 
are usually only the seed for an avalanche process (see Fig. 4.10). In general, the primary electrons 
rapidly multiply via a beam-induced multipacting mechanism, which involves acceleration of the 
electrons in the beam field and secondary emission from their impact on the chamber wall. In the 
following, we first give an overview on the electron cloud formation (or build-up) process. We therefore 
list the main primary generation mechanisms and then discuss how the thus generated electrons can 
multipact in the presence of a train of bunches. The other important stages of the build-up of an electron 
cloud are its equilibrium and successive decay in the gap behind a bunch train. In the second part, we 
briefly discuss dynamics and consequences of the beam instabilities caused by the electron cloud that has 
formed in a beam pipe. In conclusion, we will try to give an up-to-date list of the possible techniques for 
electron cloud mitigation or suppression. 

 
 

 
Fig. 4.10. Schematic of electron cloud build-up in the LHC beam pipe during multiple bunch passages, via photo-
emission (due to synchrotron radiation) and secondary emission (Courtesy of F. Ruggiero). Note that the LHC is the 
1st proton storage ring for which synchrotron radiation becomes a noticeable effect. 
 
 Primary electrons are the electrons generated during the passage of a bunch. They can be photo- 
electrons from synchrotron radiation in bending regions (mainly for positron beams) or secondary 
electrons desorbed from beam particles lost at the walls (especially for ion beams). In this case they are 
emitted from the chamber wall. Primary electrons can also be created within the volume swept by the 
beam if the production mechanism is ionization of the residual gas. The location where the electrons are 
created can determine the energy gain of the primary electrons in the beam potential. The number of 
electrons created per unit length by synchrotron radiation or by beam loss during one bunch passage can 
be comparable to the average line density of beam particles, in which case these processes can alone give 
rise to amounts of electrons critical for the beam stability. The rate of photoemission (number of 
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photoelectrons created per unit length) can be estimated as the product of the photo-electron yield 

€ 

Yγ  by 
the photoemission rate 

€ 

dNγ / ds : 

 

€ 

dNeγ

ds
= Yγ

dNγ

ds
= Yγ

5α γ
2 3 ρ

, (39) 

where 

€ 

α  denotes the fine structure constant and 

€ 

ρ  the curvature radius of the beam in the dipole. For 
many materials, the photo-emission yield can be correctly approximated as being about 0.1 over a fairly 
large photon energy range, e.g. between a few eV and a few tens of keV. The azimuthal distribution of 
absorbed photons around the chamber wall and, thus, the launch positions of the emitted primary photo-
electrons depend on the reflective properties of the chamber wall. The first simulation of an electron 
cloud build-up for short bunches was written by K. Ohmi. It served to explain coupled-bunch instabilities 
observed with positron beams at the KEK photon factory [83]. Ohmi’s pioneering study considered only 
photo-emission at the chamber wall as a source of electrons, though a little later his initial code was 
extended to include secondary emission by electrons as well. 

Ionization from scattering of individual charged beam particles against molecules of the residual gas 
occurs with typical cross sections of 1-2 Mbarn for most of the gas species that can be found in a beam 
chamber. However, a lower cross section of about 0.2 Mbarn applies to the lighter species, like H2 [84]. 
These numbers refer to singly charged particles at ultrarelativistic energies. For fully ionized atoms, the 
cross section scales roughly with the square of the atomic number, i.e. like Z2. Additionally, it increases 
by several orders of magnitude towards lower beam energies. If the beam density is sufficiently high, as it 
will be in certain sections of the next generation of linear colliders, ionization by the collective electric 
field of the bunch replaces single-particle scattering ionization as the dominant ionization process [85]. 
When this happens, the beam completely and instantly ionizes the residual gas in its neighbourhood.  

Protons or ions impacting on the wall can be responsible for the generation of a large number of 
electrons. The secondary-electron yield from ion impact is approximately proportional to the projectile 
stopping power and inversely proportional to the cosine of the angle of incidence [86]. Since the stopping 
power is in turn proportional to the square of the charge number divided by the mass number, this value, 
usually very high because of the shallow angles at which losses typically occur, can be further amplified 
by one or two orders of magnitude for heavy ion beams. Production of this type of electrons also occurs 
with a high rate at the collimators, where significant beam loss routinely occurs by design.  

The mechanism responsible for an exponential growth of the number of electrons is beam induced 
multipacting. The primary electrons are accelerated by the electric field of a passing bunch to such high 
energies that they produce, on average, more than one secondary electron when they again hit the wall of 
the vacuum chamber. The Secondary Emission Yield (SEY) of the chamber material is by definition the 
number of secondary electrons produced on average by an electron impact. It is obviously a function of 
the impinging electron energy, its angle of incidence, and the chamber history. For a round chamber of 
radius 

€ 

h  and a short bunch, the resonance condition for beam-induced multipacting from electrons 
produced at the pipe walls takes the simple form [87]  

 

€ 

Nb re Lb = h2 , (40) 

where 

€ 

re  denotes the classical electron radius and 

€ 

Lb  the bunch spacing in units of length. However, the 
condition of Eq. (40) is by far too stringent. Most secondary electrons have low energy and tend to stay in 
the vacuum chamber for a long time after a bunch passage. The survival of low energy electrons is made 
even more likely by the fact that their probability of being elastically backscattered at the chamber walls 
is almost one [88]. Moreover, a different multipacting regime, called “trailing edge multipacting”, also 
exists in presence of long bunches. The electrons produced on the falling edge of the bunch can gain 
energy as they cross the pipe section and cause multipacting just during the passage of the second part of 
the bunch. This is a special type of single-bunch multipacting, causing electron clouds that can be either 
significantly cleared before the arrival of the next long bunch, or accumulate further in a mixed singe-
bunch and multi-bunch process.  

Many simulation codes have been developed over the years to study numerically the process of 
electron cloud build-up and explore different beam/machine parameter ranges (e.g. [89-91]). Due to the 
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variety of possible regimes and processes involved, simple considerations have usually turned out to be 
insufficient to predict the build-up thresholds and the change in electron cloud caused by some specific 
parameter change. It was a gratifying confirmation of the predictive power of the early simulations that 
the expected electron clouds were indeed observed at both B factories (PEP-II and KEKB) and at the 
LHC injectors PS and SPS when operated with LHC-type beams. In these rings, the electron cloud was 
seen to cause tune shift and emittance growth along the bunches of a train, both coupled and single-bunch 
instabilities and a degradation of certain beam diagnostics signals [92-94]. In the SPS and PS, significant 
beam loss could be observed at the end of a train if no countermeasures were put in place. As the electron 
cloud is still at present one of the main bottlenecks of the SPS, dedicated electron diagnostics devices are 
installed in the machine to measure the electron flux and spatial electron distribution on surfaces with 
different coatings, as well as its variation with the time of exposure, i.e. what we call “machine 
scrubbing” [95]. Concerning lepton machines, the electron cloud is typically associated with a reduction 
of specific luminosity in e-p colliders and is expected to be one of the main limiting factors for the 
damping rings of future linear collider projects. The Cornell Electron Storage Ring (CESR) was 
reconfigured in 2008 as a Test Accelerator (CesrTA) for a program of electron cloud research with lepton 
beams. With its new local diagnostics for measurement of cloud density and improved instrumentation for 
the characterization of the beam dynamics of high intensity bunch trains interacting with the cloud, this 
test facility is currently both providing a benchmark case for the existing simulation codes and testing the 
effectiveness of several types of countermeasures [96]. Since the processes of secondary electron 
emission and elastic reflection at the walls play a fundamental role in causing beam induced multipacting, 
we now shortly describe their key parameters. The true secondary yield for perpendicular incidence, δ, 
can be expressed by a universal function [97]  

 

€ 

δ x( ) = δmax
s x

s − 1+ x 2
, (41) 

where 

€ 

x = E / Emax , with 

€ 

E  the energy of the incident electron and 

€ 

Emax  the energy at which the yield 
assumes the maximum value, and 

€ 

s  is a fit parameter that was measured to be about equal to 1.35 for 
LHC Cu samples [97]. The two variable parameters in Eq. (41) are 

€ 

δmax , the maximum yield, which 
typically assumes values between about 1.0 and 3.0, and 

€ 

Emax . For non-normal incidence of the primary 
electron these two parameters are usually both increased by a factor depending on the cosine of the 
incidence angle [98]. Elastic reflection of electrons is mostly important at low energies, i.e. below about 
20 eV. The measured electron reflection probability [88] can be parametrized as  

 

€ 

δel E( ) =
E − E + E0
E + E + E0

 

 
  

 

 
  

2

, (42) 

with only one fit parameter, 

€ 

E0. Equation (42) implies that the reflection probability approaches one in the 
limit of vanishing electron energy, even if presently no general consensus has been reached around this 
point, which is still very controversial, as it is extremely difficult to measure the secondary emission yield 
at very low energy. 

The electron cloud build-up saturates when the electron losses balance the electron generation rate. 
This can happen either at low bunch charges, when the average neutralization density is reached, or at 
high bunch currents, when the electrons rapidly accumulate until the kinetic energy of the newly emitted 
ones becomes too low to let them penetrate into the space charge field of the cloud. Simulations have 
demonstrated a complex behaviour of the electron cloud equilibrium, which strongly depends on the 
combination between bunch length, charge, spacing and on the chamber radius. First of all, the saturation 
phase is generally characterized by an oscillating behaviour of the electron cloud density over the bunch 
spacing and the amplitude of this oscillation can be very large. Furthermore, in some cases the steady-
state value of the electron cloud density has been found not to be monotonically increasing with the bunch 
intensity. For instance, a beam with 50 ns spaced bunches in the SPS is predicted to hit its highest 
electron cloud equilibrium density for bunch populations of about 1011 p, while this value decreases both 
for lower and higher intensities.  
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The electron density decays after the passage of a bunch train (or in the gap between bunch trains) and 
two different regimes can be distinguished during this phase. In the first one, right after the train passage, 
the cloud decays quickly due to the space charge effects and the reminiscent energy distribution from the 
last bunch passage. In the second one, only low energy electrons will be left, which move slowly and 
exhibit a dissipation rate depending on their probability of being elastically reflected at the chamber 
surface. Due to the second part of the decay evolution, the electron clearing time between bunch trains 
can become painfully long. Three effects are suspected to be responsible for the long memory and 
lifetime of the electron cloud. First, nonuniform fields, such as quadrupoles or sextupoles, may act as 
magnetic bottles and trap electrons for an indefinite time period [99, 91]. Second, if the probability of 
elastic reflection really approaches one in the limit of zero electron energy, as is suggested by 
measurements [88], low-energetic electrons could survive nearly forever, bouncing back and forth 
between the chamber walls, independently of the magnetic field. Third, slow ions produced by residual 
gas ionization have been also suspected to be long lived in the beam chamber and, therefore, possibly 
cause (or help) electron trapping and long survival time.  

4.5.2  The electron cloud instability 

When a positron/hadron beam interacts electromagnetically with the electron cloud that has formed in the 
beam chamber, a coherent oscillation of both electrons and beam particles can grow from any small initial 
perturbation of the beam distribution, e.g. from the statistical fluctuations due to the finite number of 
beam particles. This instability can be considered as a two-stream instability of the same type as studied 
in plasma physics. Such instabilities can be very fast, since in the new generation of high intensity rings 
operating with many closely spaced bunches, the density of electrons can become quickly very large. 
Even machines operating with bunches spaced by hundreds of ns can actually suffer from electron cloud, 
because of the long survival time of low energy electrons in the beam pipe. Electron clouds can cause 
single-bunch instabilities as well as multi-bunch dipole mode instabilities. The multi-bunch instability 
appears when the electron cloud can carry a sufficiently long memory as to couple subsequent bunches. 
The single-bunch phenomenon, instead, is driven by a pinched electron cloud, which, over one single 
passage of the bunch through it, is able to transfer information from an offset bunch head to the bunch 
tail. Obviously, although this second type of instability is caused by a single-bunch mechanism, it can 
only occur in multi-bunch operation, since the electron cloud requires a train of several bunches to build 
up. For single-bunch instabilities caused by multi-bunch built electron clouds, electrons usually only 
perform a low number of oscillations while the bunch is passing (typically between fractions of unit and 
few units), and the bunch effectively interacts with a pre-existing cloud produced by the preceding 
bunches and filling almost uniformly the beam pipe prior to the bunch arrival. The number of electrons 
does not change appreciably during one bunch passage. In reality, another possible head tail effect 
resulting into a different type of two-stream instability was observed in some machines operating with 
long bunches. In this case, the instability is intimately related to an electron cloud from “trailing-edge 
multipacting”, described in the previous section. The electrons multiplication happening over the falling 
edge of the bunch can reach levels as to render the beam unstable. Even coasting beams are not immune 
from electron cloud problems. The electrons produced from residual gas ionization remain trapped in the 
transverse potential of the uniform beam and tend to accumulate to very high central density values. The 
electrons created at the chamber walls (e.g. from beam loss) are accelerated and decelerated in the beam 
field and eventually hit the chamber with the same energy with which they were emitted. Multipacting 
can play here a role, since electrons can gain energy and create secondaries when hitting the wall, if the 
beam line density is perturbed. The interaction of the coasting beam with the electrons can make noise 
evolve into an unstable coupled oscillation, called e-p instability, which was widely studied already at the 
beginning of the 70ies [100, 101]. While the single-bunch instability described earlier in this section can 
be treated separately from the build-up of the electron cloud that causes it, in the second case the two 
processes are coupled together and need to be solved with a joint model. 
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Electron cloud instabilities for short bunches have been observed in form of emittance growth and 
beam loss at the KEKB LER, at the CERN PS and SPS, and at the PEP-II LER. At the KEKB LER a 
blow-up of the vertical beam size was already observed at the early commissioning time [102]. This 
blow-up was not accompanied by any coherent beam motion, which could be easily suppressed by 
transverse feedback and chromaticity, and the blow-up was only seen in multi-bunch operation with a 
narrow bunch spacing. The single-bunch two-stream instability provided a plausible explanation of the 
observed beam blow-up [103]. This explanation has since been reinforced by the simultaneous 
observation of a tune shift along the bunch train, which appears for the same bunches exhibiting vertical 
size blow-up. Also the experimental evidence that the installation of solenoids around the ring could 
increase the instability threshold in regular operation shows the relation between electron cloud and the 
instability. At the CERN SPS the electron cloud has been observed since the ring has been regularly 
operated with LHC-type bunch trains [104] and it has been held responsible for strong transverse 
instabilities. In the horizontal plane a low order coupled bunch instability develops within a few tens of 
turns after injection. In the vertical plane, a single-bunch head tail instability rises on a much shorter time. 
The reason of the different behavior in the two transverse planes is ascribed to the confinement of the 
electron cloud mostly in dipole regions, which can limit the intra-bunch electron pinching in the 
horizontal plane and therefore inhibit the single-bunch mechanism for instability. The horizontal 
(coupled-bunch) instability is cured by means of a transverse feedback system. Similar to the situation at 
the KEKB LER, running the SPS at high positive chromaticity can cure the vertical instability [105]. 
Upstream from the SPS, when the nominal LHC beam was generated by the PS machine, one of the 
standard signatures of the electron cloud was observed shortly before extraction: a baseline drift in 
electrostatic devices. However, the beam resided too shortly in the machine to become unstable, even if a 
dedicated experiment proved the onset of an electron cloud instability on the short bunches, if they are 
kept in the machine for a sufficiently long time. Concerning long bunches, a great deal of evidence 
indicates that the primary instability limiting the performance of the LANL-PSR is an e-p 
instability [106]. Growth of the electron cloud results from multipacting of the electrons on the walls of 
the vacuum chamber during passage of the trailing edge of the proton beam, when the electrons can 
receive a net acceleration toward the wall. The instability was controlled by various measures to enhance 
Landau damping and transverse feedback. In coasting beams, an e-p instability was first observed in the 
LBNL-Bevatron [107] and CERN-ISR [101]. While in the Bevatron this instability was combated with 
active feedback and beam bunching, in the ISR additional pumping was installed to improve the vacuum 
from 0.1 to 0.01 nTorr and the number of clearing electrodes was increased to sweep away the electrons. 
 Several analytical approaches have been used to study the electron cloud instability, including few- 
particles models and an attempt to apply the TMCI theory to the electron cloud wake field, modeled as a 
broadband resonator. However the most widespread and comprehensive approach makes use of particle 
tracking simulations with localized electron cloud kicks. The numerical modeling of the interaction 
between an electron cloud and a particle bunch is discussed in Section 4.7. Simulation codes have had the 
merit to reveal interesting features of the electron cloud instability, which distinguish it from other types 
of conventional instabilities. For example, the electron cloud wake field is not only a function of the 
distance between source and probe particles, but it depends on the locations of the two separately. This 
translates into an impedance with a double frequency dependence [108]. Another interesting finding was 
that, for constant beam emittances (transverse and longitudinal) and constant bunch length, the electron 
cloud instability threshold decreases with the beam energy [109]. The reason of this anomalous behaviour 
is that, although the beam becomes stiffer at higher energies, its transverse sizes become smaller and the 
pinching effect on the electron cloud is amplified.  
 Concerning the multi-bunch instability, the usual approach is to calculate the bunch-to-bunch wake 
field with an electron cloud build-up code (which correctly models the electron cloud dynamics in the 
space between two bunches) and then apply the multi-bunch analytical formula to assess the threshold for 
the beam stability. Simulation codes with bunches modeled as single macroparticles, valid for machines 
operating with short bunches, have been also developed to study numerically the multi-bunch instabilities 
due to electron cloud in a more self-consistent manner.  
 A number of simulation tools have been developed over the years in order to study the electron cloud 
single-bunch instability for short bunches via direct particle tracking. The simulations of electron cloud 
build-up are generally treated separately, since they make use of a weak-strong approach, in which the 
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beam is rigid and is approximated by bunches with static transverse and longitudinal Gaussian 
distributions, while the electrons are macroparticles. Build-up simulations need to be run prior to the 
instability simulations, because they provide the necessary input on the transverse distribution of the 
electron cloud density at saturation just before the arrival of a bunch. A variety of simulation codes are 
presently available for this purpose [110]. Fully self-consistent computations, in which the cloud 
generation over a bunch train around the ring as well as the resulting bunch instabilities, are treated by a 
single program are still under development. The existing simulation programs to study the electron cloud 
instabilities model the interaction of a single bunch with an electron cloud on successive turns. The cloud 
is always assumed to be generated by the preceding bunches, and can be considered initially uniform or 
the distribution is imported from a build-up code. The electrons give rise to a head-to-tail wake field, 
which amplifies any initial small deformation in the bunch offset, e.g. due to the finite number of 
macroparticles in the simulation. All simulation tools that have been developed for this study are 
essentially of the strong-strong type, since the purpose is to investigate how the bunch particles are 
affected by the electron cloud via the continuous interaction. In particular, electrons are always modeled 
as macroparticles either concentrated at one or several locations along the ring or uniformly smeared 
along the axis of the machine. The bunch consists of macroparticles or of microbunches with a fixed 
transverse size. The bunch is then subdivided into slices, which interact in sequence with the electrons of 
the cloud, creating the distortion of the initially uniform cloud distribution that can affect the body and tail 
of the bunch. The electric fields of the electrons and of the beam acting mutually on each other are 
calculated by means of a Particle-In-Cell (PIC) algorithm. The transformation of the 6D phase-space 
vectors of the beam particles between two kick points is achieved using the appropriate transport 
matrices. The field of the electron cloud acting on itself can be optionally included, but in general does 
not seem to play a significant role in this type of mechanisms and hence it is neglected. For the purpose of 
studying the interplay of electron cloud instability with other mechanisms, the simulation codes contain 
synchrotron motion, chromaticity and usually additional options to model the action of an independent 
impedance source beside the electron cloud, as well as space charge and detuning with amplitude. 

4.5.3  Mitigation and suppression 

There are at least three possible actions to reduce, or even suppress, the electron cloud: (i) reducing the 
production rate of primary electrons or confining their motion to a region where they are not likely to do 
any harm; (ii) eliminating the possibility of multipacting by lowering the secondary emission yield via 
surface treatment; (iii) alleviating the effect on the beam or on the diagnostics. In most cases a combined 
approach is desirable, that’s why most machines affected by electron cloud problems have usually chosen 
to implement more than one of these mitigating techniques. The primary production of photoelectrons 
needs to be reduced, because it may be so high that the electron cloud could reach saturation within a few 
bunch passages even without any multipacting. This is the case at KEKB, the photon factory, and could 
even be in the LHC, if no countermeasures were taken. The obvious solution is an antechamber to 
intercept most of the synchrotron radiation, or also photon absorbers (as those designed for the CLIC 
Damping Rings). For dipole fields, a saw-tooth pattern impressed on the chamber wall, as was 
implemented for the LHC (actually on the beam screen that forms the inner part of the chamber and 
serves to protect the cold bore of the magnets from synchrotron radiation), is used for effectively reducing 
the photon reflectivity thanks to the perpendicular impact. Weak solenoids of the order of 50 G are a 
possibility in field-free regions, which was successfully implemented in the straight sections of KEKB 
and in RHIC. The solenoids do not really affect the photoemission process, but they keep the 
photoelectrons close to the wall and, thus, strongly mitigate the subsequent beam-electron interaction. 
Since the gas ionization rate is linearly proportional to the vacuum pressure in the beam chamber, the 
number of electrons created by gas ionization can only be reduced by significant factors improving the 
vacuum. If field ionization is important, however, a possible cure would be lengthening the bunches, 
though this will mainly be a concern for future projects such as linear colliders or X-ray FELs operating 
with positrons. Electrons generated by beam loss can be controlled if the localization of the losses is 
known with good precision. For example, electrons produced by the beam losses at a collimator can be 
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controlled by solenoids or clearing electrodes. A large number of electrons is also generated at the 
injection stripping foils, for accelerators employing charge-exchange injection. At the SNS, a 10-kV 
clearing voltage is applied to channel the electrons liberated at the stripping foil onto a collector plate that 
is monitored by a TV camera, while solenoids are used along the collimator straights.  
 A well established method to reduce multipacting is coating with TiN, a material whose secondary 
emission yield becomes quickly low after some conditioning (through illumination under synchrotron 
light). The thickness of the coating must be of the order of a µm, such as not to alter the resistive 
impedance seen by the beam. A more favorable getter material made from TiZrV, called Non-Evaporable 
Getter (NEG), was developed at CERN. This getter material is characterized by its greater structural 
stability than TiN, its pumping capability and its low activation temperature. The warm sections of the 
LHC, about 10% of the circumference, have been coated with NEG. The NEG coating was also tested at 
several light source insertion devices, where circumstantial evidence suggests an increase in the effective 
impedance, presumably due to a larger surface roughness and low conductivity. The additional 
contributions to the ring impedance from the surface roughness and low conductivity impedance of the 
coating layer is of no concern for the longer proton bunches in the LHC, but could significantly affect the 
stability of the short positron beams in the Damping Rings of a future linear collider. From 2007 on, new 
efforts have been put on the search for coating materials that do not require high temperature activation 
and do not suffer from aging. In particular, amorphous carbon (a-C) thin films, deposited with d.c. 
magnetron sputtering, have shown to possess all these qualities. Besides, their maximum secondary 
emission yields, measured in the lab, reach values even below one and the films are also stable against 
mechanical stress. Testing of a-C coating in accelerator environments (SPS and Cesr-TA) have 
demonstrated all these features, even if the static and dynamic pressure behaviour in their presence has so 
far underperformed. Another method to reduce the secondary emission yield of a surface is to use a 
naturally rough material.  
 Multipacting can also be suppressed by solenoids, though one should pay attention to the possibility 
of exciting undesired cyclotron resonances. Electric clearing fields are an efficient cure, as shown both in 
simulations and measurements of electron cloud in the CERN PS. They were already used to cure 
electron-proton instabilities for the coasting proton beams in the CERN ISR during the early 70s. At the 
SNS operating with long proton bunches all BPMs can be biased with a clearing voltage of 1 kV. To be 
effective for the multipacting experienced by short bunches with close spacing, the clearing electrodes 
must be mounted all around the ring, in distances of a few tens of cm and voltages of the order 1 kV are 
probably required. The impedance introduced by many such devices could be prohibitive, as it appeared 
to be the case in the DAΦNE positron ring with the very first clearing electrode design. Other options for 
a practical implementation of electric clearing fields may be splitting the beam pipe into a top and bottom 
half, isolated from each other and held at different potential. Biasing the two jaws of a collimator against 
each other is a similar idea. Recently, there is a growing interest towards the suppression of multipacting 
by means of grooves on the chamber wall. This technique, first tested in simulations, has proven to be 
efficient in KEKB and Cesr-TA. These grooves essentially act as electron traps. Angle and depth of the 
grooves are key parameters and specifications are different in dipole or field-free regions. Proper tailoring 
of the bunch filling patterns (bunch spacing, bunch trains and bunch charges) is yet another way of 
achieving an acceptable electron density. Examples include the actual bunch spacing chosen for PEP-II 
and KEKB operation, which are twice or three times the design spacing, and satellite bunches proposed 
for the LHC [111]. Gaps between trains can lower the density and reset the cloud at least to some extent. 
Extensive studies of the electron cloud formation as a function of the bunch filling patterns were also 
carried out at RHIC, in which the optimization could be found using the maps approach to quickly scan 
the build-up for different configurations.  
 The electron cloud causes a large variety of undesired effects. Common stabilizing measures can be 
taken against the resulting instabilities, which include transverse bunch-to-bunch feedback, increased 
chromaticity, Landau-damping octupoles, intra-bunch head-tail feedback, and linear coupling. 
Degradation of diagnostics signals due to impacting electrons can be also overcome with local solenoid 
windings. 
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4.6  Beam-beam effects 

The problem of the beam-beam interaction is the subject of many studies since the introduction of the first 
particle colliders. It has been and will be one of the most important limits to the performance and 
therefore attracts the interest at the design stage of a new colliding beams facility. A particle beam is a 
collection of a large number of charges and represents an electromagnetic potential for other charges. It 
will therefore exert forces on itself and other beams. The forces are most important for high density 
beams, i.e. high intensity and small beam sizes, which are the key to high luminosity. The 
electromagnetic forces from particle beams are very non-linear and result in a wide spectrum of 
consequences for the beam dynamics [112-116]. Furthermore, as a result of the interaction, the charge 
distribution creating the disturbing fields can change as well. This has to be taken into account in the 
evaluation of beam-beam effects and in general a self-consistent treatment is required. Although we now 
have a good qualitative understanding of the various phenomena, a complete theory does not exist and 
exact predictions are still difficult. Numerical techniques such as computer simulations have been used 
with great success to improve the picture on some aspects of the beam-beam interaction while for other 
problems the available models are not fully satisfactory in their predictive power. 
In the case of a round beam, the linear tune shift of a small amplitude particle crossing a round beam of a 
finite length can be derived as follows. We use the force to calculate the kick it receives from the 
opposing beam, i.e. the change of the slope of the particle trajectory. Starting from the two-dimensional 
force and multiplying with the longitudinal distribution which depends on both, position 
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s  and time 
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t  and 
assuming a Gaussian longitudinal shape with a width of 
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σ s , yields (see Eq. (3))  
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Using Newton’s law and integrating over the collision, the radial deflection is obtained (with 
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m0  the mass 
of the particle) 
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The radial kick 
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Δ ′ r  a particle with a radial distance 
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r  from the opposing beam centre receives is then 
(with 
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r0  the classical particle radius) 
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4.6.1  Beam-beam parameter and tune footprint 

For small amplitudes 
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r  one can derive the asymptotic limit 
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This limit is the slope of the force at 

€ 

r = 0

 
and the force becomes linear with a focal length as the 

proportionality factor. From the formula relating the focal length to a tune change, one can derive a 
quantity 
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ξ

 
(not to be confused with the relative chromaticity!), which is known as the linear beam-beam 

parameter 
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where 

€ 

β *  is the optical amplitude (betatron) function at the interaction point. For small values of 

€ 

ξ  and a 
tune far enough away from linear resonances this parameter is equal to the linear tune shift. The beam-
beam parameter is often used to quantify the strength of the beam-beam interaction, however it does not 
reflect the non-linear nature. The beam-beam parameter can be generalized for the case of non-round 
beams and becomes 
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 Since the beam-beam forces are strongly non-linear, the study of beam-beam effects encompasses the 
entire field of non-linear dynamics as well as collective effects. First we briefly discuss the immediate 
effect of the non-linearity of the beam-beam force on a single particle. It manifests as a amplitude 
dependent tune shift and for a beam with many particles as a tune spread. The instantaneous tune shift of 
a particle when it crosses the other beam is related to the derivative of the force with respect to the 
amplitude. For a particle performing an oscillation with a given amplitude the tune shift is calculated by 
averaging the slopes of the force over the range (i.e. the phases) of the particle’s oscillation amplitudes. 
An elegant calculation can be done using the Hamiltonian formalism [114] developed for non-linear 
dynamics and as demonstrated in the chapter on non-linear dynamics using the Lie formalism. We get the 
formula for the non-linear detuning with the amplitude 
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where 
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I0 (x)

 
is the modified Bessel function and 
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J = ε β / (2σ 2 ) in the usual units. Here 
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ε

 
is the particle’s 

“emittance” and not the beam emittance. In the 2-dimensional case, the tune shifts (

€ 

ΔQx ,

€ 

ΔQy ) of a particle 
with amplitudes 
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x  and 
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y  depend on both, horizontal and vertical amplitudes. The detuning must be 
computed and presented in a 2- dimensional form, i.e. the amplitude (
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x ,
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y ) is mapped into the tune space 
(
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Qx ,

€ 

Qy ) or alternatively to the 2-dimensional tune change (

€ 

ΔQx ,

€ 

ΔQy ). Such a presentation is usually 
called a “tune footprint” and an example is shown in Fig. 4.11(left) and it maps the amplitudes into the 
tune space and each “knot” of the mesh corresponds to a pair of amplitudes. Amplitudes between 0 and 

€ 

6σ  in both planes are used. The cross indicates the original, unperturbed tunes without the beam-beam 
interaction. The maximum tune spread for a single head-on collision is equal to the tune shift of a particle 
with small amplitudes and for small tune shifts equal to the beam-beam parameter 

€ 

ξ . In the simple case 
of a single head-on collision the parameter 

€ 

ξ  is therefore a measurement of the tune spread in the beam. 
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Fig. 4.11. Tune footprint for the head-on interaction only (left) and tune footprint for long-range interactions only for 
vertical separation and amplitudes between 0 and 20 

€ 

σ  (right), with nominal LHC beam parameters in collision but 
for the injection tunes. 

4.6.2  Incoherent beam stability 

When the beam-beam interaction becomes too strong, the beam can become unstable or the beam 
dynamics is strongly distorted. One can distinguish different types of distortions and a few examples are: 
(i) non-linear motion can become stochastic and can result in a reduction of the dynamic aperture (i.e. the 
maximum amplitude where the beam remains stable) and particle loss and bad lifetime; (ii) distortion of 
beam optics: dynamic beta (LEP) [113]; (iii) vertical blow-up above the so-called beam-beam limit. 
 Since the beam-beam force is very non-linear, the motion can become “chaotic”. This often leads to a 
reduction of the available dynamic aperture. Particles outside the dynamic aperture can eventually get 
lost. The dynamic aperture is usually evaluated by tracking particles with a computer program through the 
machine where they experience the fields from the machine elements and other effects such as wake 
fields or the beam-beam interaction. The beam-beam interaction is basically a very non-linear lens in the 
machine, it distorts the optical properties and it may create a noticeable 

€ 

β -beating around the whole 
machine and at the location of the beam-beam interaction itself. This can be approximated by inserting a 
quadrupole, which produces the same tune shift at the position of the beam-beam interaction. The r.m.s. 
beam size at the collision point is now proportional to the square root of the perturbed 

€ 

β -function which 
can be significantly different from the unperturbed 

€ 

β -function. This in turn changes the strength of the 
beam-beam interaction and the parameters have to be found in a self-consistent form. This is called the 
dynamic beta effect. This is a first deviation from our assumption that the beams are static non-linear 
lenses. A strong dynamic beta effect was found in LEP [117] due to its very large tune shift parameters. 
Another effect that can be observed in particular in e+e‐ colliders is the blow up of the emittance which 
naturally limits the reachable beam-beam tune shifts. 
 In e+e‐ colliders the beam sizes are usually in equilibrium between the damping due to the 
synchrotron radiation and heating mechanisms such as quantum excitation, intra-beam scattering and very 
importantly, the beam-beam effect. This leads to a behaviour that is not observed in a hadron collider. 
When the luminosity is plotted as a function of the beam intensity, it should increase approximately as the 
current squared [118]. At the same time, the beam-beam parameter should increase linearly with the beam 
intensity according to Eq. (47). In all e+e‐ colliders the observation can be made that above a certain 
current, the luminosity increases approximately proportional to the current, or at least much less than with 
the second power [119]. Another observation is that at the same value of the intensity the beam-beam 
parameter saturates. This limiting value is commonly known as the beam-beam limit. The dynamics of 
machines with high synchrotron radiation is dominated by the damping properties and the beam-beam 
limit is not a universal constant nor can it be predicted. Simulation of beams with many particles can 
provide an idea of the order of magnitude [120,121]. 
 To reach the highest luminosity, it is desirable to operate a collider with as many bunches as possible 
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since the luminosity is proportional to their number [118]. In a single ring collider such as the SPS, 
Tevatron or LEP, the operation with 

€ 

k  bunches leads to 

€ 

2 k  collision points. When 

€ 

k  is a large number, 
most of them are unwanted and must be avoided to reduce the perturbation due to the beam-beam effects. 
Various schemes have been used to avoid these unwanted “parasitic” interactions. In the SPS, Tevatron 
and in LEP so-called “Pretzel schemes” were used. When two beams of opposite charge travel in the 
same beam pipe, they can be moved onto separate orbits using electrostatic separators. In a well-defined 
configuration the two beams cross where the beams are separated. Such a configuration is called a Pretzel 
scheme. When the bunches are equidistant, this is the most promising method. To avoid a separation 
around the whole machine, the bunches can be arranged in so-called trains of bunches following each 
other closely. In that case a separation with electrostatic separators is only needed around the interaction 
regions. Such a scheme was used in LEP in the second phase [122]. 

Contrary to the majority of the colliders, the LHC collides particles of the same type, which therefore 
must travel in separate beam pipes. At the collision points of the LHC the two beams are brought together 
and into collision. During that process it is unavoidable that the beams travel in a common vacuum 
chamber for more than 120 m. In the LHC the distance between the bunches is only 25 ns (i.e. 7.5 m) and 
therefore the bunches will meet in this region. In order to avoid the collisions, the bunches collide at a 
small crossing angle of 285 µrad. While two bunches collide at a small angle (quasi head-on) at the 
centre, the other bunches are kept separated by the crossing angle. However, since they travel in a 
common beam pipe, the bunches still feel the electromagnetic forces from the bunches of the opposite 
beam. When the separation is large enough, these so-called long-range interactions should be weak. 
 Although the long-range interactions distort the beams much less than a head-on interaction, their 
large number and some particular properties require careful studies: (i) they break the symmetry between 
planes; (ii) while the effect of head-on collisions is strongest for small amplitude particles, they mostly 
affect particles at large amplitudes; (iii) the tune shift caused by long-range interactions has opposite sign 
in the plane of separation compared to the head-on tune shift; (iv) they cause changes of the closed 
orbit [112]; (v) they largely enhance so-called PACMAN effects [123]. The opposite sign of the tune shift 
can easily be understood when we average the oscillation of a small amplitude particle as it samples the 
focusing force of the beam-beam interaction. When the separation is larger than 

€ 

~ 1.5σ , the focusing 
(slope of the force as a function of the amplitude) changes the sign and the resulting tune shift assumes 
the opposite sign. To some extent this property could be used to partially compensate long-range 
interactions when a configuration is used where the beams are separated in the horizontal plane in one 
interaction region and in the vertical plane in another one. 
 Assuming a separation 

€ 

d  in the horizontal plane, the kicks in the two planes can be written as 
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(50) 

 
The equivalent formula for the plane orthogonal to the separation is 
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(51) 

 
The effect of long-range interactions must strongly depend on the separation. The calculation shows that 
the tune spread 

€ 

ΔQlr

 
from long-range interactions alone follows an approximate scaling (for large enough 

separation, i.e. above 

€ 

~ 6σ ) 

 

€ 

ΔQlr ∝
Nb

d 2
.
 

(52) 

 
Small changes in the separation can therefore result in significant differences. 
 When two beams do not collide exactly head-on, the force has a constant contribution, which can 
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easily be seen when the kick 

€ 

Δ ′ x  from Eq. (50), for sufficiently large separation, is developed in a series 
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(53) 

 
A constant contribution, i.e. more precisely an amplitude independent contribution, changes the orbit of 
the bunch as a whole. When the beam-beam effect is strong enough, i.e. for high intensity and/or small 
separation, the orbit effects are large enough to be observed. When the orbit of a beam changes, the 
separation between the beams will change as well, which in turn will lead to a slightly different beam-
beam effect and so on. The orbit effects must therefore be computed in a self-consistent way [124], in 
particular when the effects are sizeable. The closed orbit of an accelerator can usually be corrected, 
however an additional effect which is present in some form in many colliders, sets a limit to the 
correction possibilities. A particularly important example is the LHC. 
 Contrary to the head-on interaction where the small amplitude particles are mostly affected, now the 
large amplitude particles experience the strongest long-range beam-beam perturbations. This is rather 
intuitive since the large amplitude particles are the ones, which can come closest to the opposing beam as 
they perform their oscillations. We must therefore expect a totally different tune footprint. Such a 
footprint for only long-range interactions is shown in Fig. 4.11(right). Since the symmetry between the 
two planes is broken, the resulting footprint shows no symmetry. In fact, the tune shifts have different 
signs for 

€ 

x  and 

€ 

y , as expected. 
 For too small separation, the tune spread induced by long-range interactions can become very large 
and resonances cannot be avoided any more. The motion can become irregular and as a result particles at 
large amplitudes can get lost. To evaluate the dynamic aperture in the presence of beam-beam 
interactions, a simulation of the complete machine is necessary and the interplay between the beam-beam 
perturbation and possible machine imperfections is important. For the present LHC parameters we 
consider the minimum crossing angle to be 285 µrad. 
 The bunches in the LHC do not form a continuous train of equidistant bunches spaced by 25 ns, but 
some empty space must be provided to allow for the rise-time of kickers. These gaps and the number of 
bunches per train are determined by requirements from the LHC injectors. The whole LHC bunch pattern 
is composed of 39 smaller trains (each with 72 bunches) separated by gaps of various length followed by 
a large abort gap for the dump kicker. Due to the symmetry, bunches normally meet other bunches at the 
head-on collision point. For the long-range interactions this is no longer the case. Bunches at the 
beginning and at the end of a small train will encounter a hole and as a result experience fewer long-range 
interactions than bunches from the middle of a train [123]. Bunches with fewer long-range interactions 
have a very different integrated beam-beam effect and a different dynamics must be expected. In 
particular they will have a different tune and occupy a different area in the working diagram, therefore 
may be susceptible to resonances, which can be avoided for nominal bunches. The overall space needed 
in the working diagram is therefore largely increased [123,124]. Another consequence of reduced long-
range interactions is the different effect on the closed orbit of the bunches. We have to expect a slightly 
different orbit from bunch to bunch. The bunches in the middle of a train have all interactions and 
therefore the same orbit while the bunches at the beginning and end of a train show a structure which 
exhibits the decreasing number of long-range interactions. The orbit spread is approximately 10 – 15% of 
the beam size. Since the orbits of the two beams are not the same, it is impossible to make all bunches 
collide exactly head-on. A significant fraction will collide with an offset. Although the immediate effect 
on the luminosity is small [118], collisions at an offset can potentially affect the dynamics and are 
undesirable. The LHC design should try to minimize these offsets [123,125]. A further consequence of 
the LHC filling and collision scheme is that not all bunches experience all head-on collisions [125,126]. 
Some of the bunches will collide only in two instead of the four nominal interaction points, leading to 
further bunch-to-bunch differences. 
 Another observation can be made in lepton colliders with strong damping when two beams collide 
with different beam-beam strength parameters (e.g. due to different intensities or emittances). In such a 
configuration the stronger beam can cause a blow-up of the beam size of the weaker beam, reducing 
further its beam-beam strength. An equilibrium condition with different beam sizes can be the result. 
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When both beams are very strong, small perturbations can cause one of the beams to change into a state 
of larger beam size. Further perturbations may cause the inversion of the roles of the two beams, leading 
to another of these so-called flip-flop states. Such flip-flop states have beam predicted in simulations and 
observed in LEP where frequent orbit corrections led to small changes of the damping partitions of the 
two beams and caused flip-flop situations [120,121]. 

4.6.3  Coherent beam-beam modes 

So far we have mainly studied how the beam-beam interaction affects the single-particle behaviour and 
treated the beam-beam interaction as a static lens. In the literature this is often called a “weak-strong” 
model: a “weak” beam (a single particle) is perturbed by a “strong” beam (not affected by the weak 
beam). When the beam-beam perturbation is important, the model of an unperturbed, strong beam is not 
valid anymore since its parameters change under the influence of the other beam and vice versa. When 
this is the case, we talk about so-called “strong-strong” conditions. The first example of such a “strong-
strong” situation was the orbit effect where the beams mutually changed their closed orbits. These closed 
orbits had to be found in a self-consistent way. This represents a static strong-strong effect. In the next 
step we investigate dynamic effects under the strong-strong condition [127]. When we consider the 
coherent motion of bunches, the collective behaviour of all particles in a bunch is studied. A coherent 
motion requires an organized behaviour of all particles in a bunch. A typical example are oscillations of 
the centre of mass of the bunches, so-called dipole oscillations. Such oscillations can be driven by 
external forces such as impedances and may be unstable. At the collision of two counter-rotating bunches 
not only the individual particles receive a kick from the opposing beam, but the bunch as an entity gets a 
coherent kick. This coherent kick of separated beams can excite coherent dipole oscillations. Its strength 
depends on the distance between the bunch centres at the collision point. It can be computed by adding 
the individual contributions of all particles. For small distances it can be shown [112, 128] that it is just 
one half of the incoherent kick a single particle would receive at the same distance. For distances large 
enough the incoherent and coherent kicks become the same. 
 To understand the dynamics of dipole oscillations we first study the simplest case with one bunch in 
each beam. When the bunches meet turn after turn at the collision point, their oscillation can either be 
exactly in phase (0 degree phase difference) or out of phase (180 degrees or 

€ 

π
 
phase difference). Any 

other oscillation can be constructed from these basic modes. The first mode is called the 0-mode (or 
sometimes called 

€ 

σ -mode) and the second the 

€ 

π -mode. In the first mode the distance between the 
bunches does not change turn by turn and therefore there is no net force driving an oscillation. This mode 
must oscillate with the unperturbed tune 

€ 

Q0 . For the second mode the net force difference between two 
turns is a maximum and the tune becomes 

€ 

Q0 + ΔQcoh . The sign of 

€ 

ΔQcoh  depends whether the two beams 
have equal charge (defocusing case) or opposite charge (focusing case). The calculation of 

€ 

ΔQcoh  is non-
trivial: when the bunches are considered as rigid objects, the tune shift can be computed easily using the 
coherent kick but is underestimated [129]. The correct calculation must allow for changes of the density 
distribution during the collision and moreover, must allow a deviation from a Gaussian function. The 
computation requires to solve the Vlasov-equation of two coupled beams [130-133]. The 0-mode is found 
at the unperturbed tune as expected. The 

€ 

π -mode is shifted by 1.2-1.3 

€ 

ξ . The precise value depends on 
the ratio of the horizontal and vertical beam sizes [131]. We have seen before the incoherent tune spread 
(footprint) the individual particles occupy and we know that it spans the interval [0.0,1.0] 

€ 

ξ , starting at 
the 0-mode. Here one can make an important observation: under the strong-strong condition the 

€ 

π -mode 
is a discrete mode outside the incoherent spectrum [132,133]. This has dramatic consequences for the 
stability of the beams. A coherent mode that is outside an incoherent frequency spectrum cannot be 
stabilized by Landau damping. Under these conditions the coherent beam-beam effect could drive the 
dipole oscillation to large amplitudes and may result in the loss of the beam. Observations of the coherent 
beam-beam effects have been made at PETRA [129]. Beam-beam modes have been observed with high 
intensity coasting beams in the ISR [134], and recently in a bunched hadron collider at RHIC [135]. 
 Coherent beam-beam modes can be driven by head-on collisions with a small offset or by long range 
interactions. In the first case and for small oscillations, the problem can be linearized and the theoretical 
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treatment is simplified. The forces from long-range interactions are very non-linear but the numerical 
evaluation is feasible. Since the coherent shift must have the opposite sign for long-range interactions, the 
situation is very different. In particular the 

€ 

π -mode from long-range interactions alone would appear on 
the opposite side of the 0-mode in the frequency spectrum [133,136]. Both, the incoherent and the 
coherent spectra include both types of interactions. 

4.6.4  Compensation of beam-beam effects 

For the case the beam-beam effects limit the performance of a collider, several schemes have been 
proposed to compensate all or part of the detrimental effects. The basic principle is to design correction 
devices, which act as non-linear ‘lenses’ to counteract the distortions from the non-linear beam-beam 
‘lens’. For both, head-on and long-range effects schemes have been proposed: (i) head on effects: electron 
lenses [137,138], linear lens to shift the tunes, non-linear lens to decrease tune spread; (ii) long-range 
effects: at large distance, the beam-beam force changes like 

€ 

1 / r , i.e. the force is similar to the one of a 
wire, which could therefore be used to compensate the effect [139]! 

4.7  Numerical modelling 

Collective effects can be studied analytically, either through the perturbation formalism applied to the 
Vlasov equation or by means of few (typically two or three) particles models with the basic ingredients 
such as to reproduce the essential features of the phenomenon under study. Both ways are usually based 
on simplified approaches, in which some assumptions are necessary to make the models analytically 
solvable and lead to limited sets of equations relatively easy to interpret and handy to use. 
 The analytically solvable two or three particles models can be refined further to more realistic models, 
in which more than just few particles are assumed to represent the full particle beam. However, since the 
number of coupled differential equations to be solved grows proportionally with the number of particles 
used in the model, the resulting set of equations will rapidly become unmanageable as we increase the 
number of macroparticles (which are used to approximate the beam with a reduced number of particles), 
unless it is fed into a numerical simulation to be run on a computer. By using computers, the number of 
macroparticles necessary to model a beam can be pushed up to several millions, which is very useful to 
study the details of all possible internal oscillation modes of a bunch (or train of bunches), and also 
incoherent effects like emittance growth. Although ideally we would like to develop simulation programs 
that take into account the highest possible number of effects, in practice the existing codes narrow down 
their models to one or few effects, whose consequences in the beam dynamics is interesting to single out. 
For example, to study the effects of electron clouds, the beam will be made to interact with a given 
electron cloud at some locations around the accelerator ring, but in general other possible interactions 
with impedances, or the concurrent effects of space charge, beam-beam, Intra Beam Scattering, will be 
neglected. Although the study of two or more effects simultaneously is technically possible in most cases, 
at the present state of art of the simulations, it is generally preferred to limit the study of such interplays, 
because the combined models are difficult to control and tend to break down. Pushing further on this line, 
not only different effects are decoupled in simulations, but also different regimes in the beam dynamics. 
For instance, for some problems only a partial description of the beam will be sufficient, so that 
transverse problems can be treated separately from longitudinal problems as well as single-bunch singe-
turn effects can be usually separated from multi-bunch and multi-turn effects. 
 To perform a simulation, we will therefore have to define our beam as an ensemble of macroparticles, 
identified through arrays containing the phase space coordinates of each macro-particle (2 to 6-
dimensional). This beam is first initialized and then transported across selected points of the accelerator 
ring using the appropriate transformation matrices. At each of these points, the interaction with the 
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desired collective effect will be applied (e.g. the beam’s own space charge field, an electron cloud, a wake 
field). It is clear, therefore, that a numerical simulation requires in the first place the knowledge of the 
driving term to be applied at each interaction point. That’s why in the following we separate the general 
simulation into the solution of an electromagnetic problem, in which the collective interaction is modelled 
and the resulting excitation on the beam is calculated (at least, its non-self-consistent part), and the beam 
tracking part, in which the evolution of a beam is studied under the effect of this excitation. Note that 
most of numerical simulations including collective effects are based on time domain models, as these are 
best suited to describe the usually non-stationary beam evolution under the effect of collective 
interactions. 

4.7.1  The electromagnetic problem 

The first step to set up a numerical simulation including a collective effect consists of identifying the 
source of the self-induced perturbation acting on the beam and modelling it in a way that can be 
subsequently used. We usually distinguish three different types of collective interactions, which can take 
place with: (i) space charge (see Section 4.1); (ii) wake fields from an accelerator component or part of 
the resistive beam pipe (see Section 4.2); (iii) another “beam” of charged particles. This secondary beam 
can be either a counter-rotating beam in a collider (see Section 4.6), or a static cloud formed by the 
accumulation of particles, usually of opposite charge, around the primary beam (see Section 4.5).  
 If the source of the perturbation is space charge, then two different approaches are possible to 
compute its effect. Analytical formulae are available for the electromagnetic fields of coasting beams with 
ellipsoidal or Gaussian transverse sizes, as well as of ellipsoidal or Gaussian bunches (in all dimensions). 
The additional kicks given by these electromagnetic fields can be therefore calculated and applied to the 
beam macroparticles in a finite number of locations along the ring (even if the space charge interaction is 
in reality continuous). When doing that, self-consistency requires that the sizes of the bunch are updated 
at every kick point. Another possible approach consists of using the macroparticle distributions at each 
selected kick point to calculate self-consistently the electric field with a Poisson solver and use it to 
calculate the electromagnetic kicks on the macroparticles. It is worth noting that the same approach can 
be used for beam-beam problems, because the shape of the required electric field is the same, even if the 
coefficients need to be adapted (electric and magnetic forces tend to cancel at ultra-relativistic energies 
for space charge, while they add up for beam-beam). 
 If the source of the perturbation is a wake field from an accelerator component or resistive wall, the 
shape of the relative wake function has to be calculated beforehand. This is done analytically for some 
specific cases (e.g. resistive wall, step or tapered transitions), but in general dedicated electromagnetic 
codes can be used for this purpose. Some of them work in time domain, and can provide the wake 
potentials for given source bunches (usually chosen to be short enough as to simulate ideal pulse 
excitations and thus provide directly the wake functions). Other work in frequency domain and output 
impedances, which need then to be back-transformed into time domain to obtain the wake functions. 
 If the source of the perturbation is for example an electron cloud, then the electron distribution of the 
cloud is usually calculated beforehand by means of an electron cloud build-up code, and then its 
interaction with a coming bunch is calculated. Programs tracking simultaneously electrons and beam 
particles are presently not available, due to the massive memory and CPU requirements to solve this type 
of problems. On the other hand, generation and tracking of the ions can be included in multi-bunch beam 
tracking programs to calculate the effect of ions on bunched electron beams in a fully self-consistent 
manner. This is due to the fact that, while ions do not move significantly during the passage of an electron 
beam and allow modelling the bunches as charged disks, electrons can even perform several oscillations 
during the passage of a bunch, which requires a much more detailed modelling of the bunch. 
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4.7.2  Beam dynamics 

Beam dynamics tracking codes simulate the motion of beam particles inside an accelerator by 
transporting them across a number of discrete points by means of transformation matrices. In each of 
these points, additional kicks can be added, modelling either nonlinear components and errors of the 
external fields or the collective interactions. In the previous subsection, we have outlined the procedure to 
calculate the excitation to be applied to the beam to compute its evolution when it feels one or more 
collective interactions. To model the effects of space charge, wake fields and electron clouds, it is 
certainly necessary to describe the beam as an ensemble of macroparticles but beside that, its longitudinal 
structure needs also to be detailed. In particular, to model coupled bunch instabilities the relative positions 
of the macroparticles across the different bunches are necessary to determine the total effect of the wake 
acting on each of them. For single-bunch effects, a possible technique is to subdivide the bunch into 
several slices, so that the macroparticles of each slice can feel the integrated effect of the wakes left 
behind by the preceding slices (or the space charge from its own and the neighbouring slices, or the 
electron cloud as was deformed by the previous slices). A possible scheme of numerical simulation of a 
single bunch under the effect of a longitudinal wake field is illustrated in Fig. 4.12. 
 The bunch is first divided into 

€ 

N  slices and in a kick point to each macroparticle within a given slice a 
kick must be applied depending on the longitudinal wake function and the charge distribution of the 
preceding slices. In the longitudinal plane, particles within a slice feel also the effect of the same slice to 
which they belong, because the bunch suffers a net energy loss. After all the particles in the bunch feel the 
effect of the wake at a kick point, they are subsequently transported to the next kick point in the 
accelerator optical model. Since synchrotron motion plays a key role in most of the effects under study, it 
is essential that particles are made to execute their synchrotron oscillations and move across slices from 
turn to turn. This means that collective effects dealing with single-bunch problems need to have at least 
one model of synchrotron motion built in, and that the bunch binning has to be regularly updated. Since 
the synchrotron motion is slow enough, and in reality the RF cavities do really kick the beam particles 
once or few times per turn, a bunch slicing more frequent than once per turn is unrealistic and basically 
unhelpful. 
 The simulation scheme with transverse wakes is basically the same as the one displayed in Fig. 4.12, 
except that particles inside one slice do not feel the effect of the same slice (as the transverse wakes are 
zero in the origin, for ultra-relativistic particles) and dipolar and quadrupolar contributions can be 
separated, making the wake kicks depending not only on the position of the source slice but also on the 
position of the witness macroparticles. The simulation scheme with the electron cloud is again similar to 
the one shown in Fig. 4.12, but the fundamental difference is that there is a mutual action between beam 
and electron cloud, so that, while macroparticles within a slice feel the effect of the electron cloud, the 
electron cloud itself is also deformed by the action of the passing slice. 

The modelling described in the previous subsections has been frequently applied to explain collective 
instabilities observed in running machines, as well as to predict instability thresholds (both in existing and 
future machines) and develop strategies to circumvent limitations from collective effects. For instance, a 
detailed impedance model of the SPS comprises the contributions from several accelerator components 
and is used for deriving single-bunch wake fields, which are the driving terms for HEADTAIL 
simulations. The kicks given to the beam particles by the different wake fields can be then either applied 
at the real locations in which the sources are situated, or weighted by the beta functions, summed up and 
applied in a single location using a one-kick approximation. These simulations can be used for predicting 
at which intensity transverse mode coupling occurs and the effects of chromaticity on this threshold 
value. This is very important to extrapolate the beam stability limits in different conditions of operation, 
e.g. with a different optics or to the upgraded machine, which will be in principle enabled to receive 
higher intensity bunches. The mode shift can be plotted as a function of the bunch intensity, because the 
main modes are detectable from the Fourier analysis of the centroid motion. A typical plot of mode shift 
provided by simulations is displayed in Fig. 4.7. 
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Fig. 4.12. Example of numerical simulation with collective effects: schematic view of the interaction of a single 
bunch with a longitudinal wake field at several locations in an accelerator ring. 
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