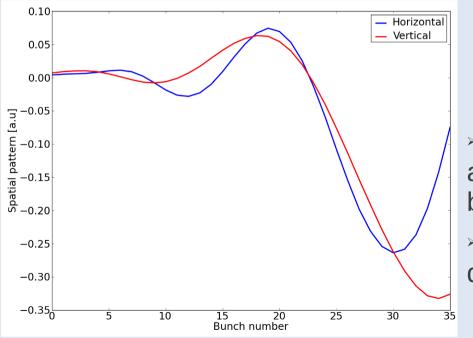
Some coupled-bunch instabilities data, and codes to simulate them


Nicolas Mounet

Mainly extracted from EPFL PhD thesis # 5305 - Supervisors: Elias Métral & Leonid Rivkin

Coupled-bunch instabilities

In the LHC, the beams are made of many bunches (up to 1380 in 2011)
 ~36 cm
 ~15 m
 ~10¹¹ p⁺

Bunches can interact together and in some cases begin to oscillate. Example with 36 bunches in the LHC: oscillation pattern along the bunch train (simulation result):

→ Coupled-bunch instabilities

Must be damped by feedback system and/or Landau damping (otherwise beams are lost).

Important to study them to know if damping mechanisms are sufficient.

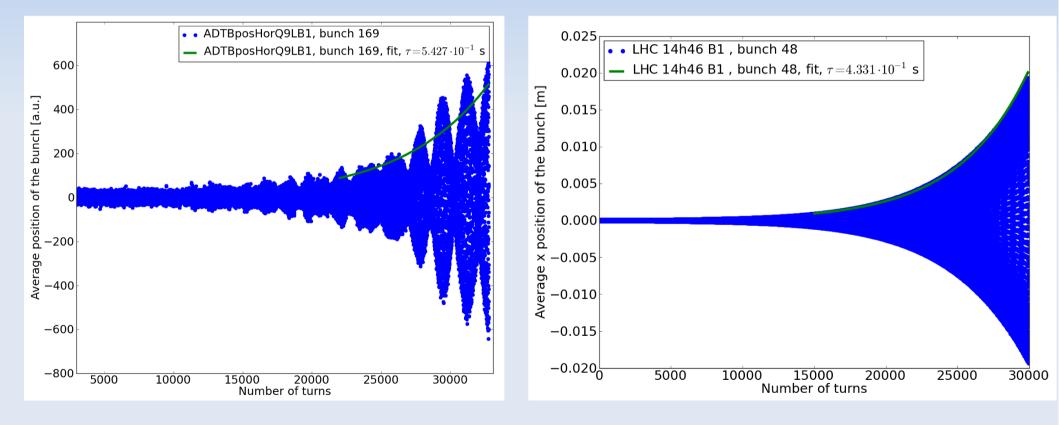
Multibunch simulation code

- HEADTAIL: beam dynamics simulation code, using macroparticles
 - Pre-existing single-bunch version (G. Rumolo et al, PRST-AB, 2002):

Bunch
Macroparticle
$$i \begin{pmatrix} x_i \\ x'_i \end{pmatrix}$$
 Slice $S(x_s, y_s, z_s)$
Ch $\int macropart. i$ receives kick from the wake of all preceding slices: $\begin{pmatrix} x_i \\ x'_i \end{pmatrix} \rightarrow \begin{pmatrix} x_i \\ x'_i \end{pmatrix} \rightarrow (x_i + \Delta x'_i (x_s, x_s, z_s - z_s))$
then it is transported through the machine lattice: $\begin{pmatrix} x_i \\ x'_i \end{pmatrix} \rightarrow M \cdot \begin{pmatrix} x_i \\ x'_i \end{pmatrix}$
(similar treatment for the other components of the macroparticle y_i, z_i).

Extension of the code: allow several bunches + parallelization over the bunches (extensive use of EPFL clusters).

Parallelization quite efficient because each bunch can be treated independently \rightarrow communication between processors only once per turn.

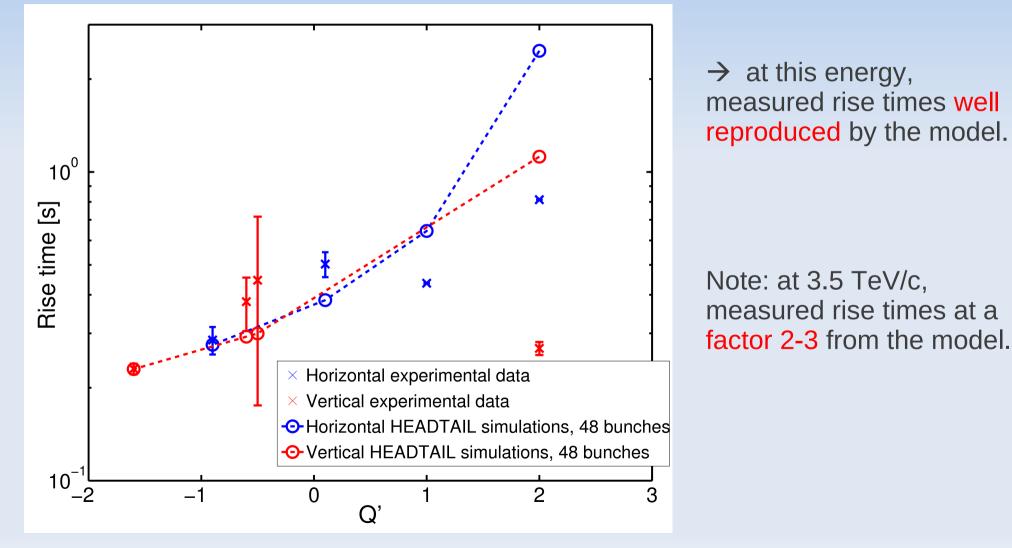

7

Fa

tur

Comparisons between simulations and beam-based impedance measurements

• At 450 GeV/c, 12+36 bunches, switched off feedback for 2.5 s, with $Q'_x=0.4 \rightarrow \text{coupled-bunch instability}$: here for the last bunch of the train



Measurement

Simulation

Comparisons between simulations and beam-based impedance measurements

 12+36 bunches at 450GeV/c, coupled-bunch instability rise times measured vs. simulations (beam 2)

ATS seminar 26/04/2012 - EPFL PhD thesis - N. Mounet

Another way to study instabilities

 Using a semi-analytical code that solves linearized Vlasov eq. assuming a small & single-harmonic perturbation of the distribution

 \rightarrow DELPHI (for Discrete Expansion over Laguerre Polynomials and Headtail modes),

 Based on solution of Sacherer integral equation (Chao's book, Eq. 6.179) written as an eigenvalue problem:

 \rightarrow using a decomposition over Laguerre polynomials of the radial function (idea from Besnier 1974, used then by Y. Chin in code MOSES - 1985),

 \rightarrow including azimuthal & radial modes, and mode coupling (like MOSES),

 \rightarrow including generalization to any kind of impedance, multibunch effects and damper (here we use a flat damper model, i.e. with constant wake),

 \rightarrow not including Landau damping.