ACTIONS FOR THE RLIUP WORKSHOP AND HL-LHC WP2

Elias Métral

 RLIUP => Comments to be given on several scenarios considered: <u>http://emetral.web.cern.ch/emetral/ICEsection/2013/2013-10-02/</u> <u>RLIUP_LHC_scenarios.pptx</u>

 HL-LHC WP2 (16th meeting, 13/09/2013) => <u>https://indico.cern.ch/</u> getFile.py/access?resId=minutes&materialId=minutes&confId=270585

RLIUP (1/3)

	N _{b inj} [10 ¹¹]	ε* _{inj} [μm]		ε* _{coll} [μm]	B-B Sep [σ]	Min β* (xing/sep) [cm]	Xing angle [µrad]	L_{peak} [10 ³⁴ cm ⁻² s ⁻¹]	L _{lev} [10 ³⁴ cm ⁻² s ⁻¹]	τ _{lumi} [h]	Lev. time [h]	Machine eff. 6 h fills [%]	Machine eff. opt. fill length [%]	Opt. Fill length [h]	Avg. Peak- pile-up density [ev./mm]	Target int. Lumi [fb ⁻¹ /year]
PIC	1.3	1.28	1.24	1.54 <mark>1)</mark>	12	40/20	285	3.6	-	5.8	-	33.9	33.6	5.1	1.24	70
PIC	1.3	1.65	1.24	1.98 <mark>2)</mark>	12	40/20	323	3.1		8.1		35.0	35.0	6.1	0.97	70
US1	1.45	1.37	1.38	1.8 <mark>2)</mark>	10 <mark>4</mark>)	40/10	256	6.2	5.1	5.6	1.1	49.6	49.3	5.1	1.53	170
US1	2.0	2.18	1.9	2.621)	10 <mark>4)</mark>	40/10	320	7.4	4.6	8	3.7	41.8	41.4	7.2	1.45	170
US1	2.0	2.18	1.9	2.621)	10 <mark>4</mark>)	40/20	310	5.4	4.6	8	1.2	49.4	49.4	6.2	1.45	170
US2	2.32	2.08	2.2	2.5 <mark>2)</mark>	12	15/15	590 <mark>3)</mark>	20	5.1	8.2	11.2	57.3	47.3	13.0	1.16	270
US2	2.32	2.08	2.2	2.5 <mark>1)</mark>	10 <mark>4)</mark>	30/7.5	420	19	5.1	8.2	10.7	57.3	48.0	12.6	<1.24 <mark>5</mark>)	270

- PIC => Experiments compatible with 140 PU-events crossing
- US1 => PIC + BBLR in 1 and 5 + needs for 40 / 10 optics
- US2 => US1 + Crab cavities + 800 MHz? + e- lens?

RLIUP (2/3)

Transverse beam stability and heating

- Are the above schemes compatible with transverse stability taking into account the collimator settings (assuming present jaw materials) presented by Roderik at the WP2 meeting on 13/9?
- At which stage do we need to have Molybdenum-Graphite jaws with Molybdenum coating for impedance reduction?
- Is the octupole strength sufficient for all cases up to 7 TeV?
- When heating is becoming an issue for the present hardware?

Beam-beam

- Is there any scheme among those proposed for BCMS (see next slide) that could pose problems for beam-beam effects?
- What is the required beam-beam separation for flat optics and no BBLR? What is the dependence on intensity?
- BBLR position vs emittance, flat beam crossing angle with BBLR. Is it compatible with collimation?

RLIUP (3/3)

Filling patterns with BCMS and max of 5 PS train per SPS extraction => Any proposal or other suggestion?

	К _{в1/в2}	k _{IP1/IP5}	k _{iP2}	k _{IP8}
Filling 1	2508	2508	2108	2204
Filling 2	2508	2472	2087	2240
Filling 3	2508	2428	2061	2284
Filling 4	2508	2384	2035	2328
Filling 5	2652	2652	1839	1859

•	Abort Gap Keeper at 276 bunches
•	Max. 5 PS train/SPS extraction (=240 bunches)
•	No isolated bunches to ATLAS and CMS
•	12 bunches intermediate injection
•	Over injection over pilot

E-cloud effects

- What are the heat loads that we can expect after scrubbing for the considered scenarios? And during scrubbing?
- What is the required SEY to achieve in the triplets to avoid electron cloud build-up?
- What are the electron cloud effects that we can expect after scrubbing during the various phases?
- Countermeasures?

HL-LHC WP2 (1/2)

- BS to contact ElenaS and StephaneF to get estimates of the parameters that they are considering for the scaling of the beaminduced RF heating for HL-LHC
- GR should try and include, in his presentation on the heat load on the triplets beam screens due to electron cloud, the effect of the simultaneous presence of the 2 beams
- EM to discuss with the equipment teams about the possibility of testing with measurements and simulations the cooling effectiveness
- EM to provide estimates including the trapped mode analysis for the new TDI (being refurbished during LS1 and new design should be foreseen for after LS2)
- EM to ask for more accurate analysis of heat management (cooling effectiveness)
- Impedance team to analyze the MKI temperature data collected in 2012

Elias Métral, 93rd ICE meeting, 02/10/2013

HL-LHC WP2 (2/2)

- EM to transmit the information concerning the heat load on the striplines for the HL-LHC triplet
- Impedance team to check the new design of the BSRT (which should reduce the RF heating) for the HL-LHC parameters
- Impedance team to create a table with the expected heat loads for all the LHC components for which the impedance is known assuming the HL-LHC nominal beam parameters
- Impedance team to estimate the RF heating for the various upgrade scenarios (RLIUP), highlighting the need of possible interventions on some of the hardware components