EFFECT OF TRANSVERSE IMPEDANCE ON LUMINOSITY MEASUREMENTS: v2

$$
\begin{aligned}
& \text { Elias Métral } \\
& \text { (thanks Nicolas Mounet and Roderik Bruce) } \\
& 1^{1^{\text {st }} \text { version on } 03 / 07 / 2013} \begin{array}{l}
\text { Correction of a } \\
\text { M. Zobov) by a factor 2-1/4 } \approx \\
0.84 \text { (see slide 7) }=>\text { Many } \\
\text { thanks! }
\end{array} \\
& \text { Question from Witold Kozanecki (25/06/2013) } \\
& \text { - Reminder: Due to the beam-beam deflection (in fact 2/3 from deflection } \\
& \text { and } 1 / 3 \text { from dynamic beta) generating a systematic orbit deformation at } \\
& \text { the interaction point, the luminosities had to be re-normalised by 1-2\% } \\
& \text { - Next step: Check the effect of the transverse impedance => Question: } \\
& \text { What is the transverse kick at the TCT and the orbit displacement at the } \\
& \text { IP (for ATLAS)? }
\end{aligned}
$$

ASSUMPTIONS / CONDITIONS

- It is assumed that the beam moves essentially (significantly only) at the TCT due to the closed bump
- Conditions
- Beta* = 11 m
- E = 4 TeV
- $\mathrm{Nb}=9 \mathrm{E} 10 \mathrm{p} / \mathrm{b}$
- Sigmaz = 10 cm
- $\mathbf{Q x}=64.31$
- Max. displacement at the TCT of $\sim 1 \mathrm{~mm}$ as 6 sigmas at the interaction point means 3 sigmas $/$ beam (as it is done symmetrically) $\Rightarrow>$ Taking 3 sigmas at the TCT means $\sim 1 \mathrm{~mm}$ at the TCT \Rightarrow Consider a max displacement at the TCT of 1 mm
- Opening of the TCT (half gap) $=10 \mathrm{~mm}$

WHAT WENEED TO DO / KNOW

- 1) Beta functions at the TCT
- 2) Phase advances between TCT and IP (ATLAS)
- 3) Transverse kick factor of the TCT (total, i.e. geometric + RW)

$$
\kappa_{\perp}=\iint d s d s^{\prime} \rho(s) \rho\left(s^{\prime}\right) W_{\perp}\left(s-s^{\prime}\right)
$$

$$
=-\frac{1}{\pi} \int_{0}^{\infty} d \omega|\tilde{\rho}(\omega)|^{2} \operatorname{Im}\left[Z_{\perp}(\omega)\right]
$$

$$
\tilde{\rho}(\omega)=e^{-\frac{\sigma_{z}^{2} \omega^{2}}{2 c^{2}}}
$$

THEN, ANSWERS TO THE 2 QUESTIONS

- 1) Transverse kick at the TCT (to the centre of charge of the bunch)
\# particles / bunch

- 2) Orbit displacement at the IP

Beta function at TCT

CASE OF A PURELY INDUCTIVE IMPEDANCE (1/2)

- In the case of a purely inductive impedance $\Rightarrow \quad Z_{\perp}(\omega)=j C_{Z_{\perp}}$

- Case of a round collimator with LHC parameters

CASE OF A PURELY INDUCTIVE IMPEDANCE (2/2)

$$
\Rightarrow \quad \kappa_{\perp}=-\frac{\theta_{c}}{2 \pi^{3 / 2} \varepsilon_{0} \sigma_{z}}\left(\frac{1}{b}-\frac{1}{d}\right)
$$

$$
<\Delta x^{\prime}>=\frac{2 N_{b} r_{p} x_{0} \theta_{c}}{\beta^{2} \gamma \sqrt{\pi} \sigma_{z}}\left(\frac{1}{b}-\frac{1}{d}\right)
$$

CASE OF A RW IMPEDANCE

- In the case of a Resistive-Wall impedance in the classical regime (round) =>

Length of impedance

$$
\begin{aligned}
& Z_{\perp}(\omega)=(1+j) \frac{L Z_{0}}{\pi b^{3}} \frac{1}{\sqrt{2 \mu_{0} \sigma \omega}} \\
& \Rightarrow \quad \kappa_{\perp}=-\frac{\sqrt{2} L Z_{0} \Gamma\left(\frac{5}{4}\right)}{\pi^{2} b^{3}} \sqrt{\frac{c}{\mu_{0} \sigma \sigma_{z}}} \\
& \text { Permeability of vacuum } \\
& <\Delta x^{\prime}>=\frac{\sqrt{2} N_{b} r_{p} x_{0} \Gamma\left(\frac{1}{4}\right)}{\beta^{2} \gamma \pi b^{3}} \frac{L}{\sqrt{2} \text { instead of } 2^{\frac{3}{4}}} \frac{L \text { in }^{\text {st }} \text { version) }}{\sqrt{Z_{0} \sigma \sigma_{z}}}
\end{aligned}
$$

NUMERICAL APPLICATIONS (1/2)

- Geometrical horizontal kick at the TCTH and orbit change at IP
- $b=10 \mathrm{~mm}$
- $\mathrm{d}=35 \mathrm{~mm}$
- Tapering angle $=15 \mathrm{deg}$
- Betax = 160.1 m
- Deltamux = 123.6 deg

$$
\begin{aligned}
& <\Delta x^{\prime}>_{T C T}=6.810^{-6} \mu \mathrm{rad} \\
& \Delta<x>_{I P}=6.610^{-5} \mu \mathrm{~m}
\end{aligned}
$$

NUMERICAL APPLICATIONS (2/2)

- RW horizontal kick at the TCTH and orbit change at IP
- L=1 m
- $b=10 \mathrm{~mm}$
- Resistivity = 5.4E-8 $\Omega \mathrm{m}$
- Betax = 160.1 m
- Deltamux = 123.6 deg

$$
\left\langle\Delta x^{\prime}\right\rangle_{T C T}=2.010^{-6} \mu \mathrm{rad}
$$

$$
\Delta<x>_{I P}=1.910^{-5} \mu \mathrm{~m}
$$

