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Models

 Two models developed to study the combined 
effect of BB and impedance:
 Hollow beam model: based on the work by 

Perevedentsev et al. Allows to see all the modes 
and study their stability → fast but no Landau 
damping

 Macro-particle model: based on BeamBeam3D by 
J. Qiang, added impedance → slow but includes 
Landau damping

 Complementary tools to study how these 
effects couple



  

HeadtailBeamBeam3D

Impedance in BeamBeam3D

→ Used the impedance model for current LHC collimators settings / optics
→ Good agreement between headtail and BeamBeam3D



  

Comparison with Theory

→ Comparison of tracking with Nicolas and Alexey's new theory (analytical values 
courtesy of A. Burov)

→ Without damper excellent agreement

→ With damper maximum error of the order 10% at Q'=-2.0 for Gaussian distribution



  

Hollow Beam Model
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Synchro-Betatron Modes

β*/σ
s
=100

→ In these plots beam-beam only

→ For large ratio β*/σ
s
 – non synchro-betatron coupling introduced by BB: side-bands

deflected by the coherent tune shift + coherent modes at Q and Q-ξ (linear BB kick)

→ Small ratio β*/σ
s
 – the beam-beam can deflect the side bands – more complex picture

β*/σ
s
=1



  

Comparison with Tracking
Linear Kick + Hollow beam 6D Gaussian Kick

→ Three models for the beam-beam kick possible: linear, Gaussian, Poisson solver
→ Hollow beam + linear kick direct comparison
→ Used a ratio of β*/σ

s
 of 1 to enhance the coupling

→ Results qualitatively the same – reflection at +/-2Q
s
 (in green) seen in the tracking

→ 6D Gaussian case rescale by Yokoya factor (wrong!) / most of the modes damped
→ With beam-beam only : system always stable



  

Impedance

→ The wake used in the matrix model is constant (more complicated functions 
available but convergence is slower)

→ Tune the value of this constant to obtain about the same TMCI threshold

→ Modes stability as a function of Q' consistent with previous studies



  

BB + Impedance

→ Matrix model: never stable – most unstable mode 0 shown in green

→ Multi-particle – mode 0 unstable up to a certain beam-beam parameter 

→ Modes don't overlap for these parameters but instability becomes stronger as mode 0
approaches mode -1 – mode coupling?

→ ξ~0.003 seems to be the most critical → focus on this point for now

Matrix

β*=0.6 m



  

Instability
ξ=0.003

→ Look at two cases ξ=0.003 and ξ=0.009

→ ξ=0.009 stable – no emittance blow up observed

→ ξ=0.003 unstable – strong emittance blow up leading to reduction of beam-beam 
parameter

→ Instability seen on both beams – both σ and π modes rising



  

Chromaticity

Q'=1.0

→ A small positive chromaticity stabilizes the mode 0, mode -1 becomes the most unstable 
(from impedance theory)

→ Landau damping provided by the beam-beam tune spread stabilizes mode -1

→ True for β*=0.6 m where modes 0 and -1 couple only weakly (both can be observed on the
FFT spectrum for Q'=1.0)



  

Effect of β*

β*=10 mβ*=3 m

→ For higher β* modes 0 and 1 overlap: probably results in stronger coupling



  

Intensity Scan

→ Intensity scan for β*=10m with Q'=0

→ Comparable growth rate as for matrix model – maximum is ~ 0.4s

→ Only the coupling with mode -1 is observed – related to TMCI?



  

Chromaticity

ξ=0.003

β*=3.0m

→ For large β* even at large chromaticity the beam is not stabilized

→ Even though is doesn't stabilize the beam large chromaticity helps

→  Need to probe Q'>6 – beam could eventually become stable



  

Q'=2.0
ξ=0.003, β*=3.0m

→ Instability rises only in the horizontal plane

→ Emittance blows up and instability rises until ξ becomes small enough to decouple
the modes 0 and 1

→ Once the modes are decoupled we are back to a situation similar to the case of β*=0.6 m
with positive chromaticity and beams are stable



  

Mode Coupling

ξ=0.003
ξ=0.002

→ Look at the distance between modes 0 and -1

→ Depends both on the value of β* and the wake

→ When ξ is reduced or increased the modes can decouple as seen in simulations

β*=10.0m

Coupling range
also depends on
β* and the wake



  

Separated Beams

→ Single head-on interaction – apply separation in the horizontal plane

→ Same behavior is observed when the π or σ modes cross the +/-1 modes

→ To be noted that now the instability appears in different places depending on the plane



  

Long-range Interactions

1 IP 2 IPs alternate
crossing

→ Very simplistic model: all LR are lumped in one interaction separated by 10σ. The BB
kick is computed in 4D (round beams). The number of long-range is increased by scaling
the intensity

→ Not representative of what is in the actual machine 

→ However, LR modes can also couple +/1 headtail modes. The alternate crossing
cancels the tune shifts of the two planes: always stable even for high number of LR

Originates from 
other plane



  

HO with Damper

→ Look at instability around ξ~0.003 for worst case scenario of β*=10m

→ Even at very small gain (20 times less than nominal) the instability is damped

→ No significant emittance blow-up observed – a positive chromaticity of 2.0 did 
not affect the results



  

LR with Damper

→ Look at the instability around 10 LR 
– coupling between modes σ and -1
→ Instabilities observed up to G=0.005 
(physics settings 50 turns = 1/G)
→ Rises time of the instability gets slower 
as the gain is increased
→ Strong emittance blow-up observed (no 
losses in the code) – seem to converge to
about the same value for all gain settings.

G=0.005



  

Dependency on Octupoles Current

→ Octupoles can cure long-range instabilities (here 10LR – coupling between σ and -1)

→ Negative polarity (old one): stable between 350 and 450 A

→ Positive polarity (new one): stable between 250 and 350 A

→ Heard recently that impedance could be underestimated by a factor 2 → threshold
should be revised

→ For HO case octupoles have no impact on stability 



  

More Complex Collision Pattern

IP1

IP2

IP3

B1

B2

1
1

2

At all IPs equivalent of 7 LR with 10σ separation in H plane

IP1 IP2 IP3 N
LR

 tot.

B1/1 1 1 0 14

B1/2 0 0 1 7

B1/1 1 1 1 21

Q/4

→ BB only all bunches stable

Frequency at
which V π-mode
couples with -1



  

Including Impedance

→ Same frequency driving all the bunches
unstable

→ Amplitude is different for all bunches but 
oscillation pattern and rise-times (0.3s) are 
the same 

→ This was only observed for LR – in the 
case of HO both beams rise with same speed 
and amplitude



  

Multiple LR + HO

→ Simulations done with COMBI – BB only (courtesy of T. Pieloni)

→ With many bunches multiple peaks appears – increased complexity

→ LR interactions can add up an build large tune shift

→ LR modes always observed even with strong HO

→ Understanding the complete picture may be difficult with single bunch approximation
Impedance in COMBI? Experiment? 

LR only

LR+HO



  

Summary

  2 models developed to study the combined effect of BB and 
impedance → good agreement

  Coherent modes in the presence of BB and impedance can couple 
with much lower threshold than TMCI and drive the beams unstable. 
Appears to be driven by mode -1 in all cases

  HO (driven by core particles): high chromaticity helps stabilizing – 
damper even with small gain can completely cure instability

  LR (driven by tails particles): damper much less efficient – still 
need to investigate chromaticity – octupoles can stabilize the beams 
(act mainly on the tails)

→ Future steps: crossing angle dependency, compare with Alexey's 
theoretical approach including BB

→ Experimental verification?
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