Space charge effects and machine resonances CERN Injectors for LHC (LIU project)

Alexander Molodozhentsev (KEK) (CERN Space Charge Group / ICE)

August 22, 2012

CONTENT of the talk

→ CURRENT status of the group activity for the period March – July 2012

- Motivations
- Computational tools and hardware
- Convergence study
- MDs and benchmarking activity (PSB, PS, SPS)

This presentation is based on results, obtained by the CERN 'Space-charge' group.

CERN Space charge Group

Group manager	Frank Schmidt		
PS Booster	Vincenzo Forte Michel Martini Elena Benedetto Nicolas Mounet Christian Carli		
PS	Raymond Wasef Cedric Hernalsteens Simone Gilardoni		
SPS	Hannes Bartisik		
'RCS' design	Miriam Fitterer Christian Carli		

Motivations ... LHC 25 nsec

2011: ~ 1.1e11 with 2.8µm for 25nsec has been extracted from SPS

Post LS2 (2019): \rightarrow × 2.4 times in brightness for 25nsec

Motivations ... key-points

- LINAC2 (p⁺ 50MeV) → LINAC4 (h⁻ 160MeV)
- **PS Booster** \rightarrow W_{inj} = 160 MeV
 - ... very confident to run with $\Delta Q_y \approx -0.3$ (and reasonable hope for $\Delta Q_y \approx -0.36$)

$$\bullet \quad \mathbf{PS} \rightarrow \mathbf{W}_{inj} = 2 \text{ GeV}$$

- ... very confident to run with $\Delta Q_y \approx -0.26$ (with reasonable hope for $\Delta Q_y \approx -0.30$ with 180nsec long bunches)
- SPS (Q20 lattice)
 - ... present **assumption** is to run with $\Delta Q_v \approx -0.15$
 - ... need to increase $\Delta Q_y \approx$ -(0.20 ... 0.25)

25 ns	PSB inj		PSB extr/PS inj	PS extr/SPS inj	SPS extr/LHC inj	LHC top
Energy GeV		0.16	2	26	450	7000
Nb		1	1	72	288	2808
lb [e11 p+]		35.2	33.5	2.7	2.4	2.2
Ib in LHC [e11	p+]	2.9	2.8	2.7	2.4	2.2
Exyn [mm.mra	id]	1.9	2.0	2.1	2.3	2.5

Motivations ... key-points

□ Assumptions made on emittance blowup and beam loss:

	PSB	PS	SPS	LHC
loss %	5	5	10	10
blowup %	5	5	10	10

- □ Total assumed beam losses ~ 30% (PSB flat-bottom to LHC flat-top),
 □ Total emittance growth ~ 30%
- → For comparison: '2011 operation' saw about 13% beamloss (PS injection to LHC flat-top) with the emittance growth about 60%

Computational tools ...

Alexander Molodozhentsev (KEK)

ICE meeting / CERN / June 1, 2011

What is this code?

□ **PTC** \rightarrow Etienne Forest (KEK)

□ ORBIT → SNS-BNL code (Jeff Holmes, SNS) Idea to 'glue' these two codes was generated by <u>A.Molodozhentsev</u> and discussed during the HB ICFA06 Workshop

PTC-ORBIT combined code (from 2007, KEK-SNS)

... use for J-PARC Main Ring to study the space-charge effects in combination with the machine resonances ...

→ compiled for the KEK super computers (Hitachi & IBM, 2007) and for the CERN CLIC cluster (CERN, November 2010)

MADX-PTC → convenient way to prepare realistic machine description including user's matching procedures ...

Computational tools ...

Alexander Molodozhentsev (KEK)

ICE meeting / CERN / June 1, 2011

ORBIT node

Why PTC-ORBIT ?

Real machine with field Imperfections and alignment data

- PTC lattice representation
- → Comprehensive lattice analysis
- → RF cavities (acceleration)

Main feature:

Common environment for the single particle dynamics (lattice analysis and resonance compensation) and multi particle dynamics (collective effects).

Computational tools ...

- PTC-ORBIT(MPI) is installed on the CERN cluster
- PTC update **is synchronized** with the MADX update
- PTC-ORBIT user notes (04-25-12, p30) has been prepared and uploaded into the Space-charge Group home-page
- Basic PTC-ORBIT scripts have been prepared and uploaded into the Space-charge Group home-page
- Batch script has been prepared and tested for the 'spacecharge' queue

Alexander Molodozhentsev (KEK)

ICE group meeting/ CERN / August 22, 2012

Convergence study

ORBIT(MPI) is the PIC code

→ in particular, FFT Particle-In-Cell without (adapted grid) or with (fixed grid) the boundary

- → Optimum set of the required parameters for the 'space-charge' model
- o ... avoid artificial emittance growth ('core' and 'halo' parts of the beam)
- o ... reasonable CPU time per the '1 turn' tracking
- o ... N_{mesh} (X&Y), N_{mp}, L_{bin}, N_{spch} should be optimized for beams with different parameters (LHC type or CNGS type)

Machine lattice:

- $PSB \rightarrow basic IDEAL$ lattice without any errors <u>(static lattice)</u>
- PS \rightarrow basic IDEAL lattice \rightarrow NO any correctors
- SPS \rightarrow basic IDEAL lattice
- RCS \rightarrow basic IDEAL lattice

Convergence study → *main parameters*

LHC type beam

	Beam	Bunching	Tunes	Normalized	Estimated
	Intensity			emittances	$\Delta Q^{INC}_{sc, V}$
	×10 ¹² ppb			1σ / π μm	
PSB 160MeV	2.475 (1.5 nominal)	0.6 (τ_{σ} = 185ns) RF: 2 nd harmonic	4.26 / 4.43	3/2 official Excel	~ -0.26
LHC25	(MTInj-20bl)			datasneet	
PS 1.4GeV	0.81	$0.174 (T_F = 90 ns)$	6.21/6.23	1.45 / 1.32	~ -0.26
LHC50	1.15	0.35 (T _F = 180ns)		2.0/1.7	~ -0.23
SPS 26GeV	0.27	$0.5 \ (\tau_{\sigma} = 3 \ ns)$	20.15/20.23	2.1/2.1	~ -0.16
LHC25					
RCS 100May	1.2×10 ¹²	0.3	4.29/3.38	2.5/2.5	~ -0.15
	(1/2 nominal)				

Convergence study

Optimized setting for main parameters of the 2.5D space charge model

PTC-ORBIT(MPI)

	Method	Lmax / N _{sp}	N _{mesh} (x=y)	$N_{macro} imes 10^3$	L _{bin}
PSB	Fixed grid	1m / 199	256	1000	128
	Adapted grid	1m / 199	64	500	128
PS	Fixed grid *	10m / 70	1024	250	128
SPS	Adapted grid	3.32 <i>m /</i> 2688	64	200	128
RCS	Adapted grid	1m / 157	128	500	128

* *H: ±* 73*mm / V: ±* 35*mm*

Convergence study

→ Simulated incoherent space-charge detuning (beam parameters ... Table "Main Parameters")

... obtained space charge detuning is in good agreement with the performed estimation

Alexander Molodozhentsev (KEK)

MDs and code's benchmarking

Motivations:

- machine representation by using a realistic lattice description (including field and alignment imperfections of the machine magnets) ...
- reproduce the measured beam evolution by the PTC-ORBIT tracking (including the particle losses during injection/acceleration process at different locations around the machine)
 - ... including the implemented resonance compensations
- **better understanding** the reasons for the observed effects
- ❑ to be sure that predictions of the beam evolution (losses) at different stages are usable to improve the machine performance during the machine upgrades ...

Goal:

 \rightarrow Reproduce the measurements by the PTC-ORBIT tracking ...

 \rightarrow Improve the machine description (field and alignment errors) ...

2012	PSB	PS	SPS
June	Tune scan: Integer resonance Montague resonance	RDT measurements	Tune scan: Integer resonance
	LHC25 type beam CNGS type beam		RDT measurements
	Longitudinal space charge effects		
August		Tune scan: Skew Sextupole [2,1,19] Montague resonance [2,2,0] Sextupole resonance [3,0,19] Linear coupling [1,1,0]	

PSB: MDs

... data for the benchmarking

MD#1: May 22-23, 2012

 \rightarrow 'CNGS' (Bf=0.47) beam ... tune scan

MD#2: June 4, 6-7

 \rightarrow 'LHC25' (Bf=0.24, Bf=0.40) beam ... tune scan

MD#3: June 18, June 20

→ Space Charge effects in the longitudinal plane →`LHC25' beam (Bf=0.4) ... Montague resonance study

MD#4: June 28

→ 'CNGS' beam (Bf=0.47) ... Montague resonance study (checking MD#1)

Estimated incoherent space charge detunning*:

 $^{\rm CNGS'}$ type beam ~900e10 ppb, 15/7.5μm ~ 1eV.sec Bf=0.47 → ΔQ_{INC} ~ -0.25 $^{\rm LHC'}$ type beam ~170e10 ppb, 3.4/1.8 μm ~ 0.6eV.sec Bf=0.24 → ΔQ_{INC} ~ -0.45 Bf=0.40 → ΔQ_{INC} ~ -0.25

LHC25 type beam (B_f=0.40)

 $Q_x = 4.10, Q_y = 4.21$

Footprint after 1000 turns

Alexander Molodozhentsev (KEK)

* vertical detuning

CERN PS booster setting

MD(PSB) setting: QM pattern

$$Q_x = 4.11, Q_y = 4.21$$

$B_f = 0.241, N_b = 149 \times 10^{10}$

➢ to reproduce the measured emittance evolution by the PTC-ORBIT tracking the emittance growth near the integer resonance Q_x =4 should be visible during < 50 msec ... 50'000 turns ...</p>

Alexander Molodozhentsev (KEK)

CERN PS booster

#1 \rightarrow exchange of the H & V emittances #2 \rightarrow increasing the V emittance

CERN PS booster

PTC-ORBIT benchmarking

MD - Beam characteristics - longitudinal

- h=1 double harmonic RF +8kV & +4kV in antiphase
- Long bunch B.f. ~0.39
- RMS emittance = 0.161 eVs
- RMS ∆p/p = 1.33e-3

Simulations - Beam characteristics - longitudinal

Simulations - Beam characteristics - transverse

500 1000 1500

2D gaussian distribution

0 x [mm]

Alexander Molodozhentsev (KEK)

ICE group meeting/ CERN / August 22, 2012

o y (mm)

CERN PS booster

PTC-ORBIT benchmarking

$W_{kin} = 160 \text{MeV}$ $\begin{array}{l} LHC25 \ beam \\ B_f \sim 0.4 \\ Q_x = 4.10 / Q_y = 4.21 \end{array}$ #0 \rightarrow measurements#1 \rightarrow ideal lattice#2, #3 \rightarrow lattice with RANDOM errors { $\delta K1$ }_QM#2 : 1Sigma = 1.0×10^{-3} (relative value)#3 : 1Sigma = 5.0×10^{-3} Gaussian generator (no cut)Courtesy V.Forte

Effect of [1,0,4] resonance

Acceptable agreement between experimental data and simulation results (LHC25 beam)

Maximum random error of the PSB quadrupole magnets ~ 1.0×10^{-3} (1 σ)

Alexander Molodozhentsev (KEK)

ICE group meeting/ CERN / August 22, 2012

PTC-ORBIT benchmarking

Effect of the Montague resonance [2,-2,0]

Alexander Molodozhentsev (KEK)

ICE group meeting/ CERN / August 22, 2012

PS dedicated MDs to study the machine imperfection ('pure' lattice) at the injection energy of 1.4GeV ...

6.40 n -0.005 □ Skew sextupole coupling resonance 6.35 Linear coupling resonance $bq_{\pi} = 1$ -0.01Montague resonance 6.30 -0.015 □ 3Q, resonance Vertical tune -0.026.25 -0.025 Different beam parameters: $\rightarrow \Delta Q_y \sim -0.09$ EASTB -0.03 6.20 • LHC_INDIV $\rightarrow \Delta Q_v^{\prime} \sim -0.015$ -0.0356.15 -0.040.045 6.106.15 6.35 6.40 6.10 6.20 6.25 6.30 Horizontal tune Courtesy Alexander Huschauer

→ Data accumulation for future simulations ...

ICE group meeting/ CERN / August 22, 2012

TODO: implementation the skew-field components in the lattice to reproduce these observations

Effect of the INTEGER resonance for the PTC-ORBIT code benchmarking

```
Single bunch injection (Q20 optics)
```

Intensity ~ 2.7×10^{11} ppb (maximum acceptable) Bunch length at the injection into SPS ~ 4nsec Transverse emittance, measured at extraction from PS ~ 1.2μ m Estimated incoherent space-charge detuning (ΔQ_{H} ~ -0.15, ΔQ_{V} ~ -0.25)

Intensity ~ 1.2×10^{11} ppb (LHCindiv) Transverse emittance, measured at extraction from PS ~ $1.2 \mu m$ Estimated incoherent space-charge detuning ($\Delta Q_H \sim -0.07$, $\Delta Q_V \sim -0.11$)

Dedicated MDs using the long cycle: 10.8sec flat bottom and ramp to 450GeV

Emittance and Losses measurements for different tunes ...

CERN SPS

Alexander Molodozhentsev (KEK)

- Same beam parameters as on 24.05.2012 (see above) initial tune spread is about ΔQ_x≈0.15 / ΔQ_y≈0.25
- (lossless) blow up of the core
 - εx>2μm after 40ms
 - εx~4-5μm after 400ms

Courtesy H.Bartosik

Large aperture in horizontal plane allows for huge emittance blow-up without losses

Aperture limitations in vertical plane lead to increasing losses with vertical beam size

Conclusion

→ short summary of activity

many items for different CERN machines (including the conceptual RCS design / Miriam Fitterer) have been performed successfully during this short period of time (March-July)

<u>TODO</u>

- □ continue this activity to improve the machines representation
- continue MDs to accumulate data for the benchmarking and for better understanding the beam dynamics
- by using the improved lattices (based on MDs and benchmarking simulations by the PTC-ORBIT code) study different scenarios for the LHC Injectors Upgrade

Items in consideration ...

PSB:

- MT injection process (with double harmonic RF system) for the high beam intensity (ΔQ_V up to -0.36) by using the dynamic chicane variation with 'active' compensation the half-integer resonance
- Effects of the short bending magnets

Conceptual RCS design

- effects of the space charge at the injection energy