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•  Single bunch measurements @ 26 GeV: set-up 
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•  Example of the beam signal on Agilent 89410A from wall-
current monitor 

Figure 2: Example screen-shot of amplitude and phase of the quadrupole BTF

for a bunch of about 9 · 1010 particles kept by 95 kV at 40MHz.

by averaging over 16 acceleration cycles with approximately the same intensity

and longitudinal emittance. Even with a control of the intensity by shaving in

the PS Booster, a slight increase of the longitudinal emittance at higher inten-

sities is difficult to avoid. For some measurements we then decided to use also a

controlled longitudinal emittance blow-up with a phase-modulated RF system

at 200MHz [8].

During the measurements we recorded the longitudinal bunch profile in order

to obtain the bunch length for each intensity, a parameter necessary for deter-

mining the machine broad band impedance. Depending on the kind of fit used

for the bunch shape, Gaussian or parabolic line density, the bunch length is also

shown in the same table: for the Gaussian model we have reported the standard

deviation σG, and for the parabolic one the total length τb. Both models fit well

the measured bunch profile, as shown in fig. 3.

The results of the measurements have been used to obtain the low frequency

longitudinal impedance of the machine. To do that, we first write the longitu-

dinal equation of motion of a single particle in presence of the self induced wake
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•  Two MD sessions were dedicated to the measurements: on 
May 10th and on June 13th  

•  About one month of interval to verify the reproducibility of the 
measurements 

•  40 MHz cavity with VRF = 40 kV and 80 kV in the first MD and 
47.5 kV and 95 kV in the second MD (changing also the 40 
MHz cavity) 

•  ppb = (0.9 - 4.6) x 1011 

•  Total bunch length = (9 - 14) ns 
•  Each measurement was taken by averaging over 16 

acceleration cycles 
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Table 1: Measured incoherent quadrupole frequency shift and bunch length

(standard deviation σG for Gaussian fit, total length τb for parabolic line density
fit) at different beam intensities and RF peak voltages.

First set of measurements (10 May 2012)

Np (10
11
) VRF (kV) ± 5% f2s ± 12 (Hz) σG (ns) τb (ns)

1.40 ± 0.03 80 960 2.35 ± 0.01 9.07 ± 0.04

1.41 ± 0.02 40 675 2.83 ± 0.02 10.90 ± 0.08

4.42 ± 0.07 40 620 3.65 ± 0.03 13.83 ± 0.12

4.44 ± 0.08 80 895 2.95 ± 0.02 11.19 ± 0.06

3.19 ± 0.03 80 915 2.54 ± 0.01 9.73 ± 0.04

3.20 ± 0.03 40 640 3.12 ± 0.01 11.92 ± 0.03

2.29 ± 0.04 40 640 2.83 ± 0.02 10.90 ± 0.10

2.37 ± 0.03 80 930 2.39 ± 0.03 9.25 ± 0.12

2.30 ± 0.05 80 930 2.33 ± 0.03 9.01 ± 0.09

1.40 ± 0.01 80 955 2.94 ± 0.02 11.19 ± 0.09

1.43 ± 0.03 40 690 3.55 ± 0.02 13.50 ± 0.07

Second set of measurements (13 June 2012)

Np (10
11
) VRF (kV) ± 5% f2s ± 12 (Hz) σG (ns) τb (ns)

4.34 ± 0.09 47.5 690 3.53 ± 0.03 13.44 ± 0.10

4.52 ± 0.13 95 980 2.92 ± 0.02 11.08 ± 0.08

4.57 ± 0.06 47.5 710 3.56 ± 0.005 13.52 ± 0.02

4.40 ± 0.09 95 970 2.90 ± 0.007 11.01 ± 0.02

2.70 ± 0.08 47.5 720 3.30 ± 0.01 12.76 ± 0.04

2.67 ± 0.08 95 1025 2.71 ± 0.009 10.48 ± 0.03

2.69 ± 0.04 47.5 700 2.95 ± 0.01 11.35 ± 0.05

2.62 ± 0.08 95 1020 2.42 ± 0.02 9.35 ± 0.06

1.70 ± 0.03 47.5 760 3.45 ± 0.007 13.26 ± 0.03

1.79 ± 0.04 95 1045 2.86 ± 0.009 11.06 ± 0.03

1.76 ± 0.03 47.5 735 3.01 ± 0.02 11.59 ± 0.05

1.79 ± 0.03 95 1025 2.49 ± 0.01 9.59 ± 0.05

0.88 ± 0.03 47.5 765 3.27 ± 0.01 12.46 ± 0.04

0.91 ± 0.02 95 1045 2.73 ± 0.008 10.41 ± 0.03

0.90 ± 0.04 47.5 745 2.39 ± 0.03 9.32 ± 0.10

0.90 ± 0.02 95 1040 1.97 ± 0.02 7.71 ± 0.09

6

The PS longitudinal broadband impedance: 
comparison between measurements, theory 
and simulations 



Measurements 

•  Bunch length obtained from the bunch profile  
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Figure 3: Example of Gaussian and parabolic fit of the longitudinal measured
bunch shape.

fields as [9]

τ̈ + ω2
s0τ =

eNpω2
s0

2πVRFh cosφs

∞�

p=−∞
Z(pω0)σ0(pω0)e

ipω0τ , (1)

with τ the position of the particle with respect to the synchronous one, ωs0

the natural synchrotron frequency, h the harmonic number, φs the synchronous
phase (cosφs < 0 above transition), ω0 the revolution frequency, Z(ω) the longi-
tudinal broad band impedance, and σ0(ω) the bunch spectrum of the stationary
distribution. For a Gaussian distribution with standard deviation σG, the bunch
spectrum is

σ0(ω) = e−
ω2σ2

G
2 , (2)

whereas for a parabolic line density of total length τb, it is given by

σ0(ω) = 3
sin(ωτb/2)− ωτb/2 cos(ωτb/2)

(ωτb/2)3
. (3)

In the absence of wake fields, linear synchrotron motion has been assumed.
For the theory, the RF voltage is considered linear within the bunch duration
and all the particles oscillate at the same frequency ωs0 independently on their
amplitude. The effect of stationary wake fields in eq. (1) is to introduce a
change in the synchronous phase, an incoherent synchrotron frequency shift, and
other non-linear terms which make the frequency shift amplitude dependent, or,
equivalently, they produce a synchrotron frequency spread.
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Data analysis 

•  From: J. L. Laclare, CERN 87-03, p.264, CERN, 
Geneva, Switzerland (1987) we have 

•  Gaussian distribution: 

•  Parabolic line density distribution  
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If the incoherent frequency shift is small compared to the unperturbed syn-
chrotron frequency (∆ωs � ωs0), we can approximate by

ωs − ωs0

ωs0
=

∆ωs

ωs0
=

∆fs
fs0

� eNpω0

4πVRFh cosφs

∞�

p=−∞
Im[Z(pω0)]pσ0(pω0) . (11)

In the case of a pure inductive broadband impedance, we finally obtain

∆fs
fs0

=
eNpω0

4πVRFh cosφs

Im[Z(p)]

p

∞�

p=−∞
p2σ0(pω0) , (12)

which relates the incoherent dipole synchrotron frequency to the inductive ma-
chine impedance Im[Z(p)]/p. For the quadrupole frequency we can multiply by
2 the above expression so that finally

∆f2s
fs0

=
eNpω0

2πVRFh cosφs

Im[Z(p)]

p

∞�

p=−∞
p2σ0(pω0) . (13)

As for the synchronous phase shift, if we consider a Gaussian distribution,
and approximate the summation with an integral, we get

f2s
fs0

= 2 +
eNp√

2πVRFh cosφsω2
0σ

3
G

Im[Z(p)]

p
= 2− X̃

Im[Z(p)]

p
. (14)

By using the measurement results and the above expression, we can plot the
normalized incoherent quadrupole synchrotron frequency as a function of X̃, as
shown in fig. 4 for the first set of measurements (10 May 2012) and in fig. 5
for the second one (13 June 2012). As can easily be seen, the two independent
sets are in a very good agreement. The error bars have been obtained by using
the uncertainty propagation from the data of table 1. The slope of the linear
regression, obtained with the method of least squares, gives directly the broad-
band longitudinal impedance of the machine Im[Z(p)]/p = (9.1 ± 2.1) Ω and
Im[Z(p)]/p = (11.3 ± 1.9) Ω, respectively.

This analysis however, as for the synchronous phase shift, is valid only if we
can neglect higher order terms in τ in the expansion of the exponential term
eipω0τ in eq. (4). In order to solve the equation of motion (1) exactly without
any approximation, instead of the Gaussian distribution, we can consider a
parabolic line density interacting with a pure inductive impedance, i.e. with
constant Im[Z(p)]/p. In this case the infinite summation on the right side of
eq. (1) can be expressed in closed form

∞�

p=−∞
pσ0(pω0)e

ipω0τ = i
3πτ

ω2
0(τb/2)

3
, (15)

and it gives a coherent force linear with τ , such that the single particle equation
of motion can be reduced to

τ̈ + ω2
s0τ = − 3eNpω2

s0

2VRFh cosφsω2
0(τb/2)

3

Im[Z(p)]

p
τ , (16)
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Figure 4: Quadrupole frequency shift and linear fit with Gaussian distribution
function for the first set of measurements.
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Figure 5: Quadrupole frequency shift and linear fit with Gaussian distribution
function for the second set of measurements.

which gives a quadrupole synchrotron frequency shift of

f2s
fs0

= 2 +
12eNp

VRFh cosφsω2
0τ

3
b

Im[Z(p)]

p
= 2− X̃

Im[Z(p)]

p
. (17)
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Data analysis 

•  About the factor of two: also Laclare found it ... 
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Parabolic amplitude 
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Data analysis 
•  About the factor of two: the difference is related to the method used 

to get the frequency shift. 
•  The starting equation is the same: 

•  In case of parabolic line density distribution interacting with a pure 
inductive impedance, the summation can be expressed in a closed 
form and it gives directly a linear force 

 
•  In case of Gaussian distribution, the exponential term is expanded in 

series and only the linear term is taken into account 
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Figure 3: Example of Gaussian and parabolic fit of the longitudinal measured
bunch shape.

fields as [9]

τ̈ + ω2
s0τ =

eNpω2
s0

2πVRFh cosφs

∞�

p=−∞
Z(pω0)σ0(pω0)e

ipω0τ , (1)

with τ the position of the particle with respect to the synchronous one, ωs0

the natural synchrotron frequency, h the harmonic number, φs the synchronous
phase (cosφs < 0 above transition), ω0 the revolution frequency, Z(ω) the longi-
tudinal broad band impedance, and σ0(ω) the bunch spectrum of the stationary
distribution. For a Gaussian distribution with standard deviation σG, the bunch
spectrum is

σ0(ω) = e−
ω2σ2

G
2 , (2)

whereas for a parabolic line density of total length τb, it is given by

σ0(ω) = 3
sin(ωτb/2)− ωτb/2 cos(ωτb/2)

(ωτb/2)3
. (3)

In the absence of wake fields, linear synchrotron motion has been assumed.
For the theory, the RF voltage is considered linear within the bunch duration
and all the particles oscillate at the same frequency ωs0 independently on their
amplitude. The effect of stationary wake fields in eq. (1) is to introduce a
change in the synchronous phase, an incoherent synchrotron frequency shift, and
other non-linear terms which make the frequency shift amplitude dependent, or,
equivalently, they produce a synchrotron frequency spread.

7

This can be easily seen if we expand the exponential eipω0τ in series [9]

τ̈ + ω2
s0τ =

eNpω2
s0

2πVRFh cosφs
∞�

p=−∞
Z(pω0)σ0(pω0)

�
1 + ipω0τ − (pω0τ)2

2
+ . . .

�
. (4)

The constant term (independent on τ) on the right hand side of the eq. (4)
produces a phase shift in combination with the real part of the impedance,
which is an even function of the frequency, and it is given by

∆φ = hω0∆τ =
eNpω0

2πVRF cosφs

∞�

p=−∞
Re [Z(pω0)]σ0(pω0) . (5)

We have to remind that the phase shift given by the above expression is based
on the linear expansion of the equation of motion and has to be considered as
an approximation. In fact, if we use, for example, a broad band resonator char-
acterized by a shunt resistance Rs, a quality factor Q and a resonant frequency
ωr, with a Gaussian distribution, by replacing the summation with an integral,
we get

∆φ =
πeNpRs

VRF cosφs

�
Q2 − 1/4

Re

�
ω1e

−ω2
rσ2

G
2 Erf(−i

ωrσG√
2

)

�
(6)

with

ω1 =
ωr

Q

�
i

2
+

�
Q2 − 1

4

�
. (7)

By using instead the loss factor of a Gaussian bunch coupled with a resonator
impedance [10], the correct synchronous phase shift is slightly modified to

∆φ =
eNpRs

2VRF cosφs

�
Q2 − 1/4

Re
�
ω1e

−ω2
rσ

2
GErf(−iωrσG)

�
. (8)

Eq. (4) can also be used to obtain an approximate expression of the inco-
herent synchrotron frequency shift. In fact, if we consider the first order term
in τ of eq. (4), the oscillation frequency of a particle in the bunch becomes

ω2
s = ω2

s0

�
1 +

eNpω0

2πVRFh cosφs

∞�

p=−∞
Im[Z(pω0)]pσ0(pω0)

�
, (9)

that is
ω2
s − ω2

s0

ω2
s0

=
eNpω0

2πVRFh cosφs

∞�

p=−∞
Im[Z(pω0)]pσ0(pω0) . (10)
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If the incoherent frequency shift is small compared to the unperturbed syn-
chrotron frequency (∆ωs � ωs0), we can approximate by

ωs − ωs0

ωs0
=

∆ωs

ωs0
=

∆fs
fs0

� eNpω0

4πVRFh cosφs

∞�

p=−∞
Im[Z(pω0)]pσ0(pω0) . (11)

In case of pure inductive broad band impedance, we finally obtain

∆fs
fs0

=
eNpω0

4πVRFh cosφs

Im[Z(p)]

p

∞�

p=−∞
p2σ0(pω0) , (12)

which relates the incoherent dipole synchrotron frequency to the inductive ma-
chine impedance Im[Z(p)]/p. For the quadrupole frequency we can multiply by
2 the above expression so that finally

∆f2s
fs0

=
eNpω0

2πVRFh cosφs

Im[Z(p)]

p

∞�

p=−∞
p2σ0(pω0) . (13)

As for the synchronous phase shift, if we consider a Gaussian distribution,
and approximate the summation with an integral, we get

f2s
fs0

= 2 +
eNp√

2πVRFh cosφsω2
0σ

3
G

Im[Z(p)]

p
= 2 + X̃

Im[Z(p)]

p
. (14)

By using the measurement results and the above expression, we can plot the
normalized incoherent quadrupole synchrotron frequency as a function of X̃, as
shown in fig. 4 for the first set of measurements (10 May 2012) and in fig. 5
for the second one (13 June 2012). As can be easily seen, the two independent
sets are in a very good agreement. The error bars have been obtained by using
the uncertainty propagation from the data of table 1. The slope of the linear
regression, obtained with the method of least squares, gives directly the broad
band longitudinal impedance of the machine Im[Z(p)]/p = (9.1 ± 2.1) Ω and
Im[Z(p)]/p = (11.3 ± 1.9) Ω respectively.

This analysis however, as for the synchronous phase shift, is valid only if we
can neglect higher order terms in τ in the expansion of the exponential term
eipω0τ in eq. (4). In order to solve the equation of motion (1) exactly without
any approximation, instead of the Gaussian distribution, we can consider a
parabolic line density interacting with a pure inductive impedance, i.e. with
constant Im[Z(p)]/p. In this case the infinite summation on the right side of
eq. (1) can be expressed in a closed form

∞�

p=−∞
pσ0(pω0)e

ipω0τ = i
3πτ

ω2
0(τb/2)

3
, (15)

and it gives a coherent force linear with τ , such that the single particle equation
of motion can be reduced to

τ̈ + ω2
s0τ = − 3eNpω2

s0

2VRFh cosφsω2
0(τb/2)

3

Im[Z(p)]

p
τ , (16)
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Comparisons with simulations 

•  Simulations can give an indication about the more 
suited method for determining the PS impedance. 

•  We used the tracking code initially developed to 
study the longitudinal beam dynamics in the 
electron storage ring DA!NE at LNF-INFN and 
adapted to the beam parameters of the PS. 

•  As a check, we compared the bunch length vs 
intensity obtained with the theory and with 
simulations. 
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Figure 10: Comparison between the incoherent quadrupole frequency shift ob-

tained with the simulations and the results of the two sets of measurements.

intensity for an impedance Z(p)/p = 18.4 Ω. The red line represents the results

of the simulations, which have been compared with the analytical expression

(blue line) [9, 16]

�
σz

σz0

�3

−
�
σz0

σz

�
− 3

16

eNpc3

σ3
z0ω

2
0hVRF

Z(p)

p
= 0 , (19)

obtained by considering proton bunches with a constant longitudinal emittance

and parabolic line density.

The lengthening of the bunch with intensity is the effect of the potential well
distortion due to wake fields. However it represents only about 10% of the total

bunch length in the full range of our measurements. This means that it can not

be easily evidenced by measurements, which, moreover, should be performed at

constant longitudinal emittance. This requirement was hard to achieve, espe-

cially at higher intensities, as shown in fig. 12 where we have reported the RMS

longitudinal emittance as a function of beam intensity obtained in the second

series of measurements with and without the controlled longitudinal emittance

blow-up by means of the phase-modulated RF system at 200 MHz.

Different emittance curves are shown for measurements at 50 kV and 100 kV,

while the physical emittance should be independent from the bunching voltage.

This effect, in the range of about 10%, can be attributed to the emittance

measurement based on longitudinal tomography. The bucket area, and hence the

area of reconstruction, in the 100 kV is larger compared to the one with 50 kV,

increasing the contribution of the reconstruction noise to the RMS emittance.

15
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Comparisons with simulations 

•  Bunch length as a function of intensity obtained with 
simulations and theory, by using Im[Z(p)]/p = 18.4 " 
and VRF = 100 kV 
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Figure 11: Bunch length as a function of intensity obtained with simulations
and theory, by using Z(p)/p = 20 Ω and VRF = 100 kV.

It is worth noting that reflections from the pick-up, generating unphysical tail
after the bunch (fig. 3), enhance the reconstruction noise.
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Figure 12: RMS longitudinal emittance as a function of intensity under different
conditions.
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Comparisons with simulations 

•  We tracked the synchrotron oscillations of each 
macro-particle, and, by means of the FFT, obtained 
the corresponding frequency spectra. 

•  By including the collective effects due to the wake 
fields, an incoherent quadrupole frequency shift as 
a function of beam intensity, can be extracted. 

•  We used an impedance Im[Z(p)]/p = 18.4 " and 
performed the same analysis we did for the 
measurements. 
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an incoherent quadrupole frequency shift as a function of beam intensity, with

constant longitudinal emittance, can be extracted. In fig. 8 an example of the

FFT phase of the incoherent frequency spectrum around ω = 2ωs0 is shown at

different bunch intensities, and it can be compared to the phase of the measured

beam signal shown in fig. 2. A quadrupole synchrotron frequency decreasing

with bunch intensity is clearly visible.

0 500 1000 1500 2000
f (Hz)

0

100

200

300

400

ph
as

e 
(d

eg
)

Np=0
Np=1e11
Np=2.5e11
Np=4e11
Np=6e11

Figure 8: Phase of the incoherent frequency spectrum at different bunch intensi-

ties obtained with the simulation code with an imaginary impedance of Z(p)/p
= 18.4 Ω.

The resulting frequency shift is shown in table 2, as well as the RMS bunch

length obtained with a pure inductive impedance of Z(p)/p = 18.4 Ω at different
bunch intensities, and with VRF = 100 kV. The other machine parameters are

the same as during the measurements. The natural synchrotron frequency is

here 547 Hz.

Table 2: Frequency shift and bunch length resulting from simulations

Np (10
11
) RMS bunch length (ns) f2s (Hz)

0 2.57 1090

1 2.60 1062

2.5 2.64 1025

4 2.68 1000

6 2.74 976
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an incoherent quadrupole frequency shift as a function of beam intensity, with

constant longitudinal emittance, can be extracted. In fig. 8 an example of the

FFT phase of the incoherent frequency spectrum around ω = 2ωs0 is shown at

different bunch intensities. Cf., the phase of the measured beam signal shown

in fig. 2. A quadrupole synchrotron frequency decreasing with bunch intensity

is clearly visible in the zoomed portion.
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Figure 8: Phase of the incoherent frequency spectrum at different bunch intensi-

ties obtained with the simulation code with an imaginary impedance of Z(p)/p
= 18.4 Ω.

The resulting frequency shift is shown in table 2, as well as the standard

deviation σG for Gaussian distribution and total length τb for parabolic line

density obtained with a pure inductive impedance of Z(p)/p= 18.4 Ω at different
bunch intensities, and with VRF = 100 kV. The other machine parameters are

the same as during the measurements. The natural synchrotron frequency is

here 547 Hz.

Table 2: Frequency shift and bunch length resulting from simulations

Np (10
11
) f2s (Hz) σG (ns) τb (ns)

0 1090 2.57 9.89

1 1062 2.60 10.01

2.5 1025 2.64 10.16

4 1000 2.68 10.32

6 976 2.74 10.55
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With the values of table 2 it is possible to perform the same analysis we did

with the measured data. Of course, in this case, we already know that the broad

band machine impedance must result the one that we used as input value, that

is Z(p)/p = 18.4 Ω.
If we use the Gaussian distribution with eq. (14) we obtain the red line of the

plot in fig. 9 and an impedance Z(p)/p of only about (8.5 ± 2.0) Ω, whereas,
if we consider a parabolic line density with eq. (17), the result (blue line) is

twice that value, giving an impedance Z(p)/p = (18.2 ± 1.2) Ω very close to the

impedance initially assumed for the simulations. This again confirms the factor

2 in the determination of the broad band impedance for the PS case, indicating

that the correct result of the analysis of the measurements is obtained by using

eq. (17).
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Figure 9: Quadrupole frequency shift and linear fit with Gaussian distribution

and parabolic line density by using the simulation results.

In fig. 10 we show the results of the simulations compared with the mea-

sured ones, for the case of parabolic line density. The agreement is very good,

indicating that, with a simple model of inductive broad band impedance, we are

able of reproducing the measurement results. There is a small displacements

between the two fit curves, the intercept of the measurements being a bit too

high (it should not be greater than 2), however this overestimation is within the

measurement uncertainty of ±3σ. Some comments about the RF peak voltage

evaluation that can be the cause of this effect can be found in appendix A.

Another effect that can be evaluated with the obtained impedance model,

is the contribution of the wake fields to the bunch length. This contribution

is shown in fig. 11 where we have plotted the bunch length as a function of

14

Quadrupole frequency shift and linear fit with Gaussian and 
parabolic line density distributions by using the simulation 
results. 

The PS longitudinal broadband impedance: 
comparison between measurements, theory 
and simulations 



Comparisons with simulations 

25/07/12 Pag. 18 

0 0.002 0.004 0.006 0.008 0.01 0.012
    (1/Ω)

1.7

1.8

1.9

2

2.1

2.2

f_
2s

/f_
s0

Simulations (parab distr)
Fit Curve, A*x+B (A=-18.2, B=2.0)
Measurements
Fit A*x+B (A=-18.4±2.2, B=2.06±0.02), !  =16.5

= 2 + X̃

Z(p)/p=(18.4±2.2)Ω

2

Figure 10: Comparison between the incoherent quadrupole frequency shift ob-

tained with the simulations and the results of the two sets of measurements.

intensity for an impedance Z(p)/p = 18.4 Ω. The red line represents the results

of the simulations, which have been compared with the analytical expression

(blue line) [9, 16]
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obtained by considering proton bunches with a constant longitudinal emittance

and parabolic line density.

The lengthening of the bunch with intensity is the effect of the potential well
distortion due to wake fields. However it represents only about 10% of the total

bunch length in the full range of our measurements. This means that it can not

be easily evidenced by measurements, which, moreover, should be performed at

constant longitudinal emittance. This requirement was hard to achieve, espe-

cially at higher intensities, as shown in fig. 12 where we have reported the RMS

longitudinal emittance as a function of beam intensity obtained in the second

series of measurements with and without the controlled longitudinal emittance

blow-up by means of the phase-modulated RF system at 200 MHz.

Different emittance curves are shown for measurements at 50 kV and 100 kV,

while the physical emittance should be independent from the bunching voltage.

This effect, in the range of about 10%, can be attributed to the emittance

measurement based on longitudinal tomography. The bucket area, and hence the

area of reconstruction, in the 100 kV is larger compared to the one with 50 kV,

increasing the contribution of the reconstruction noise to the RMS emittance.
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! Introduction
! 3 different methods used

" Potential-well bunch lengthening (in 2000)
" Coherent transverse tune shifts (in 2000 and 2001)
" Incoherent quadrupole synchrotron frequency (in 2000)

! Other possible methods
! Other impedance models
! Conclusion
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CONCLUSIONCONCLUSION

! Measurements in 2000 ! Good agreement between the 3 
methods

! Bad measurement with the coherent horizontal tune shift 

! Measurements in 2001 ! Only 1 method used : Coherent 
transverse tune shifts, measured with the Qmeter

! The longitudinal impedance deduced from the vertical 
measurements is ~ 2 times bigger, and it is ~ 9 times bigger 
from the horizontal measurements
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Did someone modify something ???

In agreement with the  
measurements done in 

the past

Im[Z(p)]/p = (18.4 ± 2.2) ! 

The PS longitudinal broadband impedance: 
comparison between measurements, theory 
and simulations 



Outline 

•  Measurements the quadrupole incoherent synchrotron 
frequency shift vs single bunch intensity 

•  Results of data analysis and longitudinal broadband 
impedance value 

•  Comparisons with simulations 
•  Impedance budget 
•  Conclusions 

25/07/12 Pag. 20 The PS longitudinal broadband impedance: 
comparison between measurements, theory 
and simulations 



Impedance budget 

25/07/12 Pag. 21 

•  Space charge 

direct space charge, which, above transition, is capacitive. The space charge
impedance due to the non relativistic velocity of the charges (v = βc) in a
circular pipe of radius b can be written in the form[13, 9, 10]

Z(p)

p
= −i

Z0

βγ2
gl (20)

with Z0 the impedance of the free space, γ the relativistic Lorentz factor, and gl a
geometric factor depending on the transverse bunch distribution. In particular,
for a uniform disk distribution of radius a we obtain the widely used expression

gl = ln
b

a
+

1

2
(21)

In case of elliptic vacuum chamber, it is possible to substitute b with an equiv-
alent radius related to elliptic functions[11], which, for the PS case (semi-axes
35×73 mm), is b = 43 mm. The absolute value of the imaginary part of the
space charge impedance is shown in fig. 11 as a function of γ by assuming an
injection beam radius of 4

√
2 mm and a high energy beam radius of 1

√
2 mm.

The
√
2 term has been used to take into account a Gaussian transverse profile

instead of the uniform disk distribution.
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Figure 11: Absolute value of the imaginary part of the space charge impedance
for the PS as a function of the relativistic factor γ.

From fig. 11, we can see that the contribution to the total broad band
impedance due to the direct space charge at high energy is about 2 Ω, the
same order of magnitude of the uncertainty of the measurement results.
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Figure 14: PS kickers longitudinal impedance.

We have also evaluated the impedance due to the resistive wall. For a circular
pipe of radius b with high conductivity σc, such that c2/(ω2b) and b are much

18
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•  Ferrite loaded kickers 

A very important contribution to the total machine impedance is given by
the several ferrite loaded kickers of the PS. The longitudinal impedance has
been evaluated by using the field matching technique[25], which was shown to
be in good agreement with measurements[26] and CST Microwave Studio[14]
simulations[27]. The total longitudinal impedance of all the kickers is shown in
fig. 12.
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Figure 12: PS kickers longitudinal impedance.

Also the connection regions between the beam pipe and the vacuum pumps
give an important contribution to the geometrical impedance. Indeed the con-
nection is not a simple hole, and there is no RF shielding in the port of the
pumps. In fig. 13 we show a sketch of two structures.
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Figure 13: Sketch of two vacuum pump connections with the beam pipe.

The length of the cylindrical pipe connecting the beam pipe to the vacuum
pump does not affect, at first order, the coupling impedance. Simulations have
been performed with CST and the results are shown in fig. 14. The impedance

14

•  Connections between beam 
pipe and vacuum pumps (CST 
simulations) 
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been evaluated by using the field matching technique[25], which was shown to
be in good agreement with measurements[26] and CST Microwave Studio[14]
simulations[27]. The total longitudinal impedance of all the kickers is shown in
fig. 12.
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The length of the cylindrical pipe connecting the beam pipe to the vacuum
pump does not affect, at first order, the coupling impedance. Simulations have
been performed with CST and the results are shown in fig. 14. The impedance
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is only inductive and, for a single pump, its value is Z(p)/p = 2.8×10
−2 Ω. In

the PS there are 100 of these elements, giving a consistent contribution to the

total machine impedance.
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Figure 14: Impedance of a vacuum pump connection to the beam pipe, obtained

with CST.

We have also evaluated the impedance due to the resistive wall. For a circular

pipe of radius b with high conductivity σc, such that c2/(ω2b) and b are much

bigger than the skin depth δ, the coupling impedance is given by

Z(p)

p
=

Z0δ

2b
[1 + isgn(ω)] (22)

In case of elliptic vacuum chamber, such as that of the PS, b represents the

minor semi-axis, and the impedance has to be multiplied by a form factor that

depends on the ellipticity of the beam pipe[17, 18, 19]. For the PS chamber,

this form factor is about 0.96. The skin depth depends on the pipe material,

which, in our case, is stainless steel 316 LN (about 70% of the machine, with

conductivity σc = 1.3×10
6
S/m) and Inconel X750 alloy (about 20% of the

machine, with conductivity σc = 8.3×10
5
S/m)[20]. Both these conductivities

for the PS satisfy the conditions leading to eq. (22). The impedance contribution

due the resistive wall is shown in fig. 15 for both the materials as a function

of frequency. The impedance at the revolution frequency[21] is Z(p)/p = 2.2

(1+ i)Ω for the stainless steel 316 LN, and Z(p)/p = 0.8 (1+ i)Ω for the Inconel

X750 alloy, while at the bunch spectrum cut-off[22] it is Z(p)/p = 0.07 (1+ i)Ω
for the stainless steel 316 LN and Z(p)/p = 0.02 Ω for the Inconel X750 alloy.

Concerning the RF cavities, we have taken into account the effects of the

resonant modes due to the 10 MHz cavities (for a total of 10 cavities), one 40

15

The longitudinal impedance has been 
evaluated by using the field matching 
technique (Tsutsui), which was shown to be 
in good agreement with measurements and 
CST Microwave Studio simulations  
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•  Resistive wall 
•  10, 40, 80 MHz cavities: 

resonant modes 
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Figure 15: Resistive wall impedance for the PS vacuum chamber.

MHz cavity and two 80 MHz cavities. Their contribution to the total machine
broad band impedance is mainly resistive. As an example, in fig. 16, we show
the geometry of the 80 MHz cavity, and the wake potential of a 2.3 ns Gaussian
bunch, obtained with ABCI[23] (red line), compared with the wake potential
obtained by accounting only for the contribution of the fundamental mode (blue
line)[24].

An important source of geometrical impedance is due to the many step tran-
sitions existing in the PS vacuum chamber. In fig. 17 we report the vertical aper-
tures (horizontal and vertical) along the machine, showing many discontinuities.
When a bunch passes through a step transition, two kinds of electromagnetic
fields are excited[12]: the field scattered by the sharp edges and the one neces-
sary to restore the boundary conditions at the pipe walls. The scattered field
gives an important contribution to the resistive part of the impedance and rep-
resents energy lost both for a step-out (particle entering in a pipe with a larger
radius) and a step-in transition. On the other hand, the energy lost by the self
field in a step-out transition for restoring the boundary conditions is regained in
the step-in, such that the total energy lost is zero. This means that if a bunch
is not able to excite the scattered field, the overall impedance seen for the pair
step-out/in transition is purely inductive.

Scattered fields exist only if the bunch can excite the modes propagating
in the vacuum chamber. In case of the PS, the elliptic vacuum chamber of
35×73 mm has a cut-off frequency of the first TM mode at fc = 2.54 GHz. The
spectra of the bunches of table 1 have a characteristic frequency 1/σG less than
0.5 GHz and they are not able to excite propagating waveguide modes, meaning

16
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obtained by ABCI and by accounting only for the contribution of the funda-

mental mode.

-100
-50

0
50

100
150

H
or

iz
on

ta
l a

pe
rtu

re

0 100 200 300 400 500 600
s (m)

-100

-50

0

50

100

Ve
rti

ca
l a

pe
rtu

re

Figure 17: Horizontal and vertical physical apertures of the PS vacuum chamber.

that this kind of bunches sees only the inductive part of the impedance due to

the electromagnetic fields that restore the boundary conditions. A simplified

expression for the low frequency impedance of a step transition in a circular

pipe can be obtained by solving two quasistatic problems, electrostatic and

magnetostatic[13], and it can be written as

Z(p)

p
= i

ω0Z0h2

4π2bc

�
2 ln

2πb

h
+ 1

�
(23)
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e.g . 80 MHz cavity wake potential of 
a 2.3 ns Gaussian bunch 
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•  Step transition (average 35x73 mm  73x73 mm) 
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that this kind of bunches sees only the inductive part of the impedance due to

the electromagnetic fields that restore the boundary conditions. A simplified

expression for the low frequency impedance of a step transition in a circular

pipe can be obtained by solving two quasistatic problems, electrostatic and

magnetostatic[13], and it can be written as

Z(p)

p
= i

ω0Z0h2

4π2bc

�
2 ln

2πb

h
+ 1

�
(23)
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with h the height of the step. By considering a circular pipe from 4 cm to 8 cm,
we obtain Z(p)/p = 1.8×10−2 Ω. The above expression is however approximate
for the PS where the beam pipe is elliptic and, as can be seen in fig. 17, the steps
are not the same in the horizontal and vertical planes. With CST, a simulation
of a step out from an elliptic pipe of 35×73 mm to a circular one of 73×73 mm
gives an imaginary impedance of Z(p)/p = 8×10−3 Ω, about half of the value
predicted by eq. (23), as it should be, due to the fact that, in this case, the step
in the horizontal plane is zero.

Other methods to calculate the impedance of a step in a circular pipe take
into account the propagating modes of two semi-infinite waveguides into which
the vacuum chamber can be divided, and use boundary conditions at the step
transition[15, 16]. In all cases, the resulting impedance is purely inductive
giving, for the couple step out/in configuration, a value of about Im[Z(p)]/p =
1.6×10−2 Ω.

Another inductive element is represented by the bellows. The impedance at
low frequency can be obtained from that of a short pillbox with a width w much
lower that the height h, and it is given by[21]

Z(p)

p
= i

ω0Z0

2π2bc

�
wh− w2

2π

�
(24)

This impedance has to be multiplied by the total number of corrugations. For
the PS case we have assumed w = 3 mm, h = 14 mm, 8 corrugations per
bellow, and two bellows for each one of 100 dipoles. The total impedance,
by considering a circular chamber, is about Z(p)/p = 1.1 Ω. However, the
chamber of the bellows is not circular, so we expect a bit lower value. Indeed,
CST simulations, the results of which are shown in fig. 18, give a total inductive
impedance of Z(p)/p = 0.85 Ω, very close of the one evaluated by using the
circular chamber.
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Figure 18: Impedance of a bellow obtained with CST simulations.

There are other sources of geometrical impedance, such as discontinuities
of different kinds, shapes and sizes. We expect that they mainly contribute

18
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There are other sources of geometrical impedance, such as discontinuities
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•  Bellows 

with h the height of the step. By considering a circular pipe from 4 cm to 8 cm,
we obtain Z(p)/p = 1.8×10−2 Ω. The above expression is however approximate
for the PS where the beam pipe is elliptic and, as can be seen in fig. 17, the steps
are not the same in the horizontal and vertical planes. With CST, a simulation
of a step out from an elliptic pipe of 35×73 mm to a circular one of 73×73 mm
gives an imaginary impedance of Z(p)/p = 8×10−3 Ω, about half of the value
predicted by eq. (23), as it should be, due to the fact that, in this case, the step
in the horizontal plane is zero.

Other methods to calculate the impedance of a step in a circular pipe take
into account the propagating modes of two semi-infinite waveguides into which
the vacuum chamber can be divided, and use boundary conditions at the step
transition[15, 16]. In all cases, the resulting impedance is purely inductive
giving, for the couple step out/in configuration, a value of about Im[Z(p)]/p =
1.6×10−2 Ω.

Another inductive element is represented by the bellows. The impedance at
low frequency can be obtained from that of a short pillbox with a width w much
lower that the height h, and it is given by[21]
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This impedance has to be multiplied by the total number of corrugations. For
the PS case we have assumed w = 3 mm, h = 14 mm, 8 corrugations per
bellow, and two bellows for each one of 100 dipoles. The total impedance,
by considering a circular chamber, is about Z(p)/p = 1.1 Ω. However, the
chamber of the bellows is not circular, so we expect a bit lower value. Indeed,
CST simulations, the results of which are shown in fig. 18, give a total inductive
impedance of Z(p)/p = 0.85 Ω, very close of the one evaluated by using the
circular chamber.
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Figure 18: Impedance of a bellow obtained with CST simulations.

There are other sources of geometrical impedance, such as discontinuities
of different kinds, shapes and sizes. We expect that they mainly contribute
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35×73 mm has a cut-off frequency of the first TM mode at fc = 2.54 GHz.
The spectra of the bunches of table 1 have a characteristic frequency 1/σG less
than 0.5 GHz and they are not able to excite propagating waveguide modes.
Hence this kind of bunches sees only the inductive part of the impedance due
to the electromagnetic fields that restore the boundary conditions. A simplified
expression for the low frequency impedance of a step transition in a circular
beam pipe can be obtained by solving two quasistatic problems, electrostatic
and magnetostatic [36], and it can be written as

Z(p)

p
= i

ω0Z0h2

4π2bc

�
2 ln

2πb

h
+ 1

�
, (23)

with h the height of the step. By considering a circular pipe from 4 cm to 8 cm,
we obtain Z(p)/p = 1.8·10−2 Ω. The above expression is however approximate
for the PS where the beam pipe is elliptic and, as can be seen in fig. 19, the steps
are not the same in the horizontal and vertical planes. With CST, a simulation
of a step out from an elliptic pipe of 35×73 mm to a circular one of 73×73 mm
gives an imaginary impedance of Z(p)/p = 8·10−3 Ω, about half of the value
predicted by eq. (23), as it should be, due to the fact that, in this case, the step
in the horizontal plane is zero.

Other methods to calculate the impedance of a step in a circular pipe take
into account the propagating modes of two semi-infinite waveguides into which
the vacuum chamber can be divided, and use boundary conditions at the step
transition [37, 38]. In all cases, the resulting impedance is purely inductive
giving, for the couple step out/in configuration, a value of about Im[Z(p)]/p =
1.6·10−2 Ω.

Another important inductive element is represented by the bellows. The
impedance at low frequency can be obtained from that of a short pillbox with
a width w much lower that the height h, and it is given by [30]

Z(p)

p
= i

ncω0Z0

2πbc

�
wh− w2

2π

�
, (24)

with nc the number of corrugations per bellow.
For the PS case we have assumed w = 3 mm, h = 14 mm, 8 corrugations per

bellow, and two bellows for each of the 100 dipoles. The total impedance, by
considering a circular pipe cross section, is about Z(p)/p = 1.1 Ω. However, the
chamber of the bellows is not circular, so we expect a bit lower value. Indeed,
CST simulations, the results of which are shown in fig. 20, give a total inductive
impedance of Z(p)/p = 0.85 Ω, anyway very close to the one evaluated by using
the circular cross section formula.

There are other sources of geometrical impedance, such as discontinuities
of different kinds, shapes and sizes. We expect that they mainly contribute
to the inductive part of the impedance since the bunch spectrum is not able to
excite diffracted fields propagating in the vacuum chamber, and we are in similar
conditions as for step transitions. In table 3 we summarize the contributions to
the machine impedance due to the above reported installations.
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vacuum chamber, and we are in similar conditions as for step transitions. In table 3 we sum-

marize the contributions to the machine impedance due to the above reported installations.

Table 3: Impedance contribution of important machine elements evaluated at the bunch

spectrum cut-off. For the RF cavities the fundamental mode parameters are reported, in-

cluding fast RF feedback.

Machine element Z(p)/p at ω = 1/σG

Space charge -1.9iΩ
Magnetic kickers (1.6+i·13.8)Ω
Pumping ports 2.8iΩ
Resistive wall 0.09(1 + i)Ω

Steps 0.96iΩ
Bellows 0.85iΩ

f (MHz) Q R/Q (Ω) Number of cavities comment

7.6 5 30 10

20 4.6 43.5 1 short-circuited

40 70 33 1

80 100 56 2

This study is still in progress, however, the total longitudinal broadband impedance

estimated so far is close to the measured one. In order to compare the results, since for

some elements the impedance Z(p)/p is not constant but a function of frequency, we have

evaluated the wake potential of a Gaussian distribution with σG = 2.3 ns in both cases,

that is for the purely inductive impedance (± its uncertainty) and for the one given by the

sum of the several contributions. Fig. 21 shows that the two wake potentials are very close

each other, indicating that an inductive impedance is a fairly good model for studying the

longitudinal single bunch beam dynamics of the PS.

Instead of a purely inductive impedance, we observe that we could also use, a broadband

resonator model with an impedance of the kind

Z(ω) =
Rs

1 + iQ
�

ω
ωr

− ωr
ω

� (25)

with Rs the shunt impedance, Q the quality factor, and ωr the resonant frequency. At low

frequency ω � ωr, this can be approximated with

Z(ω → 0) � i
Rsω

Qωr
. (26)

If we consider a quality factor equal to 1 [39] and a resonant frequency equal to the

frequency cut-off of the elliptic beam pipe [35], which in the PS is 2.54 GHz, with Z(p)/p =

18.4 Ω we get Rs � 98 kΩ. The wake potential of this broadband resonator impedance for a
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•  Total wake potentials of a 2.3 ns Gaussian bunch 
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Figure 21: Wake potential of a 2.3 ns Gaussian bunch given by the total

impedance budget and by an inductive impedance model.

a broad band resonator model with an impedance of the kind

Z(ω) =
Rs

1 + iQ
�

ω
ωr

− ωr
ω

� (25)

with Rs the shunt impedance, Q the quality factor, and ωr the resonant fre-

quency. At low frequency ω � ωr, this can be approximated with

Z(ω → 0) � i
Rsω

Qωr
. (26)

If we consider a quality factor equal to 1 [39] and a resonant frequency

equal to the frequency cut-off of the elliptic beam pipe [35], which in the PS is

2.54 GHz, with Z(p)/p = 18.4 Ω we get Rs � 98 kΩ. The wake potential of this
broad band resonator impedance for a Gaussian bunch of 2.3 ns, is exactly the

same of that of a pure inductive impedance, as can be seen in fig. 22, where a

comparison between the two is shown.

An improved model of the machine impedance can be obtained by observ-

ing that there is a small asymmetry in the wake potential obtained with the

impedance budget, which is mainly due to the resistive contribution to the

impedance of the RF cavities and the ferrite loaded kickers. More precisely the

impedance can then be derived from the Heifets-Bane model [35, 40], of which

we maintain only the first two terms, the inductive and the resistive one, which

best describe our particular impedance-generating elements. In fig. 23, we show,
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•  Two improved models of the PS longitudinal broadband 
impedance 
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Figure 23: Wake potentials of a 2.3 ns Gaussian bunch given by the Heifets-
Bane model Z(ω) = (i5.67 · 10−6ω + 294) Ω and a broad band resonator with
fr = 0.5 GHz, and Rs = 17.5 kΩ, compared to the total wake budget.

with the measurements. The inductive impedance model, or the other presented
improved models that take into account also a small resistive contribution to
the total impedance, can be used to study, also with the help of a simulation
code, the beam dynamics under the effects of wake fields.
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A Beam-based voltage calibration

During the two machine development sessions, different 40MHz cavities have
been operated (C40-78 on 10 May 2012 and C40-77 on 13 June 2012). The
choice of changing the 40MHz for the second set of measurements was made
since the axis intercept of the linear fits in section 2.2 should represent an in-
direct measure of the RF voltage. For a wrong assumption of the RF voltage
during the measurement, this axis intercept of eqs. (14) and (17) may deviate
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Conclusions 
•  Two MD sessions were dedicated to the measurements of the quadrupole 

incoherent synchrotron frequency shift. 

•  The obtained longitudinal broadband impedance Im[Z(p)]/p = (18.4 ± 2.2) " is 
consistent with past measurements. 

•  We have good quality measurements in terms of beam characteristics, 
diagnostics to control the longitudinal emittance, and reproducibility. 

•  It is possible to monitor the PS broadband impedance over the coming years. 

•  The total longitudinal impedance budget obtained as a sum of different 
contributions (ferrite kickers, pumps connections, RF cavities, ...) is in a very 
good agreement with the measured impedance. 

•  The obtained broadband impedance model can be used in a simulation code to 
study the longitudinal beam dynamics under the effects of wakefields. 
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