The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

<u>M. Migliorati</u>, H. Damerau, S. Gilardoni, S. Hancock, S. Persichelli, L. Palumbo

DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Laboratori Nazionali di Frascati

Outline

- Measurements of the quadrupole incoherent synchrotron frequency shift vs single bunch intensity
- Results of data analysis and longitudinal broadband impedance value
- Comparisons with simulations
- Impedance budget
- Conclusions

• Single bunch measurements @ 26 GeV: set-up

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

 Example of the beam signal on Agilent 89410A from wallcurrent monitor

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

- Two MD sessions were dedicated to the measurements: on May 10th and on June 13th
- About one month of interval to verify the reproducibility of the measurements
- 40 MHz cavity with V_{RF} = 40 kV and 80 kV in the first MD and 47.5 kV and 95 kV in the second MD (changing also the 40 MHz cavity)
- ppb = $(0.9 4.6) \times 10^{11}$
- Total bunch length = (9 14) ns
- Each measurement was taken by averaging over 16 acceleration cycles

$N_p (10^{11})$	V_{RF} (kV) \pm 5%	$f_{2s} \pm 12 \; ({\rm Hz})$	$\sigma_G (\mathrm{ns})$	$\tau_b (\mathrm{ns})$
1.40 ± 0.03	80	960	2.35 ± 0.01	9.07 ± 0.04
1.41 ± 0.02	40	675	2.83 ± 0.02	10.90 ± 0.08
4.42 ± 0.07	40	620	3.65 ± 0.03	13.83 ± 0.12
4.44 ± 0.08	80	895	2.95 ± 0.02	11.19 ± 0.06
3.19 ± 0.03	80	915	2.54 ± 0.01	9.73 ± 0.04
3.20 ± 0.03	40	640	3.12 ± 0.01	11.92 ± 0.03
2.29 ± 0.04	40	640	2.83 ± 0.02	10.90 ± 0.10
2.37 ± 0.03	80	930	2.39 ± 0.03	9.25 ± 0.12
2.30 ± 0.05	80	930	2.33 ± 0.03	9.01 ± 0.09
1.40 ± 0.01	80	955	2.94 ± 0.02	11.19 ± 0.09
1.43 ± 0.03	40	690	3.55 ± 0.02	13.50 ± 0.07

First set of measurements (10 May 2012)

Second set of measurements (13 June 2012)

$N_p \ (10^{11})$	$V_{RF}~(\mathrm{kV})\pm5\%$	$f_{2s} \pm 12 \; ({\rm Hz})$	σ_G (ns)	$\tau_b \ (\mathrm{ns})$
4.34 ± 0.09	47.5	690	3.53 ± 0.03	13.44 ± 0.10
4.52 ± 0.13	95	980	2.92 ± 0.02	11.08 ± 0.08
4.57 ± 0.06	47.5	710	3.56 ± 0.005	13.52 ± 0.02
4.40 ± 0.09	95	970	2.90 ± 0.007	11.01 ± 0.02
2.70 ± 0.08	47.5	720	3.30 ± 0.01	12.76 ± 0.04
2.67 ± 0.08	95	1025	2.71 ± 0.009	10.48 ± 0.03
2.69 ± 0.04	47.5	700	2.95 ± 0.01	11.35 ± 0.05
2.62 ± 0.08	95	1020	2.42 ± 0.02	9.35 ± 0.06
1.70 ± 0.03	47.5	760	3.45 ± 0.007	13.26 ± 0.03
1.79 ± 0.04	95	1045	2.86 ± 0.009	11.06 ± 0.03
1.76 ± 0.03	47.5	735	3.01 ± 0.02	11.59 ± 0.05
1.79 ± 0.03	95	1025	2.49 ± 0.01	9.59 ± 0.05
0.88 ± 0.03	47.5	765	3.27 ± 0.01	12.46 ± 0.04
0.91 ± 0.02	95	1045	2.73 ± 0.008	10.41 ± 0.03
0.90 ± 0.04	47.5	745	2.39 ± 0.03	9.32 ± 0.10

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

• Bunch length obtained from the bunch profile

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Parabolic line density distribution

$$\frac{f_{2s}}{f_{s0}} = 2 + \frac{12eN_p}{V_{RF}h\cos\phi_s\omega_0^2\tau_b^3} \frac{Im[Z(p)]}{p} = 2 - \tilde{X}\frac{Im[Z(p)]}{p}$$

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

Data analysis

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Data analysis

About the factor of two: also Laclare found it ...

If we consider a parabolic line density bunch 26) interacting with a constant $I_{m}(Z_{\mu}(P)/P)$, then, without any approximation, equation (56) can be reduced to $\ddot{\tau} + \omega_{s_{o}}^{2} \tau = \frac{3I}{\pi^{2}} \frac{\omega_{s_{o}}^{2}}{V_{RF} h \cos \varphi_{s} B^{3}} \int Z_{\mu}(P) \tau$. (64)

In this particular case, the focusing force is purely linear. The corresponding incoherent frequency shift is given by

Data analysis

- About the factor of two: the difference is related to the method used to get the frequency shift.
- The starting equation is the same:

$$\ddot{\tau} + \omega_{s0}^2 \tau = \frac{eN_p \omega_{s0}^2}{2\pi V_{RF} h \cos \phi_s} \sum_{p=-\infty}^{\infty} Z(p\omega_0) \sigma_0(p\omega_0) e^{ip\omega_0 \tau}$$

 In case of parabolic line density distribution interacting with a pure inductive impedance, the summation can be expressed in a closed form and it gives directly a linear force

$$\sum_{p=-\infty}^{\infty} p\sigma_0(p\omega_0)e^{ip\omega_0\tau} = i\frac{3\pi\tau}{\omega_0^2(\tau_b/2)^3}$$

• In case of Gaussian distribution, the exponential term is expanded in series and only the linear term is taken into account

$$\ddot{\tau} + \omega_{s0}^2 \tau = \frac{eN_p \omega_{s0}^2}{2\pi V_{RF} h \cos \phi_s}$$
$$\sum_{p=-\infty}^{\infty} Z(p\omega_0) \sigma_0(p\omega_0) \left(1 + ip\omega_0 \tau - \frac{(p\omega_0 \tau)^2}{2} + \dots\right)$$

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

- We used the tracking code initially developed to study the longitudinal beam dynamics in the electron storage ring DAΦNE at LNF-INFN and adapted to the beam parameters of the PS.
- As a check, we compared the bunch length vs intensity obtained with the theory and with simulations.

$$\left(\frac{\sigma_z}{\sigma_{z0}}\right)^3 - \left(\frac{\sigma_{z0}}{\sigma_z}\right) - \frac{3}{16} \frac{eN_p c^3}{\sigma_{z0}^3 \omega_0^2 h V_{RF}} \frac{Z(p)}{p} = 0$$

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

 Bunch length as a function of intensity obtained with simulations and theory, by using Im[Z(p)]/p = 18.4 Ω and V_{RF} = 100 kV

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

- We tracked the synchrotron oscillations of each macro-particle, and, by means of the FFT, obtained the corresponding frequency spectra.
- By including the collective effects due to the wake fields, an incoherent quadrupole frequency shift as a function of beam intensity, can be extracted.
- We used an impedance Im[Z(p)]/p = 18.4 Ω and performed the same analysis we did for the measurements.

Np (10^{11})	f_{2s} (Hz)	σ_G (ns)	τ_b (ns)
0	1090	2.57	9.89
1	1062	2.60	10.01
2.5	1025	2.64	10.16
4	1000	2.68	10.32
6	976	2.74	10.55

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Quadrupole frequency shift and linear fit with Gaussian and parabolic line density distributions by using the simulation results.

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Considerations:

- good quality of the beam, in particular of the longitudinal properties
- good diagnostics to control the longitudinal emittance
- reproducibility (monitor the BB impedance over the coming years)

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

Im[Z(p)]/p = (18.4 ± 2.2) Ω

Broadband Longitudinal Impedance from Incoherent Quadrupole Frequency Measurements (2001)

J. Bento, R. Garoby, <u>S. Hancock</u>, J.-L. Vallet

|Z/n|≃ (21.7 ± 5.1) Ω

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

Outline

- Measurements the quadrupole incoherent synchrotron frequency shift vs single bunch intensity
- Results of data analysis and longitudinal broadband impedance value
- Comparisons with simulations
- Impedance budget
- Conclusions

Ferrite loaded kickers

 Connections between beam pipe and vacuum pumps (CST simulations)

beam en me vacuum pump

25/07/12

Resistive wall •

10, 40, 80 MHz cavities:

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

• Bellows
$$\frac{Z(p)}{p} = i \frac{n_c \omega_0 Z_0}{2\pi bc} \left(wh - \frac{w^2}{2\pi}\right)$$

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

25/07/12

• Summary of impedance budget

	Ma	Machine element		$Z(p)/p$ at $\omega = 1$	$/\sigma_G$	
	S	Space charge		$-1.9i\Omega$		
	Ma	Magnetic kickers		$(1.6+i.13.8)\Omega$		
	Pı	Pumping ports		$2.8i\Omega$		
	R	Resistive wall		$0.09(1+i)\Omega$		
		Steps		$0.96i\Omega$		
		Bellows		$0.85i\Omega$		
f (MHz)	Q	$\mathrm{R}/\mathrm{Q}~(\Omega)$	Nu	umber of cavities	C	omment
7.6	5	30	10			
20	4.6	43.5	1		short-circuited	
40	70	33	1			
80	100	56		2		

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

• Total wake potentials of a 2.3 ns Gaussian bunch

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Two improved models of the PS longitudinal broadband impedance

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations

Conclusions

- Two MD sessions were dedicated to the measurements of the quadrupole incoherent synchrotron frequency shift.
- The obtained longitudinal broadband impedance Im[Z(p)]/p = (18.4 ± 2.2) Ω is consistent with past measurements.
- We have good quality measurements in terms of beam characteristics, diagnostics to control the longitudinal emittance, and reproducibility.
- It is possible to monitor the PS broadband impedance over the coming years.
- The total longitudinal impedance budget obtained as a sum of different contributions (ferrite kickers, pumps connections, RF cavities, ...) is in a very good agreement with the measured impedance.
- The obtained broadband impedance model can be used in a simulation code to study the longitudinal beam dynamics under the effects of wakefields.

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12

Conclusions

- Thanks to the PS operations team for the help in setting-up the beams and to ... many people for useful discussions and suggestions!
- Thanks to BE/ABP group for the help and the warm hospitality during my stay at CERN: it has been an exciting and positive experience!

THANK ... and ... to next year! YOU! COULD IT BE A THREAT? 😇

The PS longitudinal broadband impedance: comparison between measurements, theory and simulations 25/07/12