Recent instabilities observed in

 the LHCN. Mounet \& E. Métral

Thanks to: OP team, collimation team, R. Steinhagen.

Summary of the various cases

	24/03/2012	30/03/2012	31/03/2012
General conditions	Single bunch, flat top ($4 \mathrm{TeV} / \mathrm{c}$)	Two bunches, $\beta^{\star}=0.6 \mathrm{~m}$ (4 $\mathrm{TeV} / \mathrm{c}$)	Two bunches, $\beta^{\star}=0.6 \mathrm{~m}(4 \mathrm{TeV} / \mathrm{c})$
B1 intensity	$1.0510^{11} \mathrm{p}+/$ bunch	$1.110^{11} \mathrm{p}+/ \mathrm{bunch}$	$0.810^{11} \mathrm{p}+/$ bunch
B2 intensity	$0.810^{11} \mathrm{p}+/$ bunch	$10^{11} \mathrm{p}+/$ bunch	$0.910^{11} \mathrm{p}+/$ bunch
Bunch length	1.1 ns	1.1 ns	1.15 ns
B1 norm. $\varepsilon_{\mathrm{x}} / \varepsilon_{\mathrm{y}}$	$2.8 / 2.7 \mu \mathrm{~m} . \mathrm{rad}$	$2.1 / 1.8 \mu \mathrm{~m} . \mathrm{rad}$	$1.8 / 0.9 \mu \mathrm{~m} . \mathrm{rad}$
B2 norm. $\varepsilon_{\mathrm{x}} / \varepsilon_{\mathrm{y}}$	1.5 / $1.6 \mu \mathrm{~m} . \mathrm{rad}$	2.2 / $2.4 \mu \mathrm{~m} . \mathrm{rad}$	1.3 / $1.5 \mu \mathrm{~m} . \mathrm{rad}$
$\mathrm{B1} \mathrm{Q}_{x}^{\prime} / \mathrm{Q}^{\prime}$	$0 \rightarrow 5$ (?)	$(-4 \rightarrow 4) ? / 3$	$2 / 2$
$\mathrm{B} 2 \mathrm{Q}_{x}^{\prime}$ / Q_{y}^{\prime}	$0 \rightarrow 5(?)$	$3 / 3$	$2 / 2$
Octupoles (foc.)	-232 A	-232 A	-232 A
RF voltage	12 MV	12 MV	12 MV
$\mathrm{Q}_{\mathrm{x}} / \mathrm{Q}_{\mathrm{y}}$	0.28 / 0.31	0.31 / 0.32	0.31 / 0.32
Coll. settings	Closer than tight settings	Tight settings	Tight settings except one TCP in IR3 for B1 (closer)
Observations	B2 H unstable (23:07)	B2 H/V unstable (16:35)	B1 H (V ?) unstable (19:21 \rightarrow 19:34) B2 H/V unstable (18:10)

Collimator settings on 24/03/2012

- Collimators were being moved in parallel at that time \rightarrow many collimators were at much tighter settings than the "normal" tight settings:

Collimator settings on 31/03/2012

- For B1, one TCP in IR3 is much closer to the beam than foreseen in the tight settings:

Instability on 24/03/2012

- Observations: coherent motion visible on the BBQ signal for B2 horizontal only, right before the losses:

Instability on 24/03/2012

- Analysis of the BBQ data with SUSSIX on a sliding window:

\rightarrow The amplitude of the main tune line grows with a rise time similar to the one of the previous slide (same data, different way to fit).

\rightarrow Many unexplained lines appear on the tune spectra.

Instability on 30/03/2012

- Observations: slow coherent motion visible on the BBQ signal for B2:

B2 horizontal

B2 vertical

Instability on 30/03/2012

- Analysis of the BBQ data with SUSSIX on a sliding window:

\rightarrow The amplitude of the main tune line grows with a rise time similar to the one of the previous slide.

\rightarrow Also unexplained lines appear on the tune spectra.

Instability on 31/03/2012

- Observations: slow coherent motion followed by faster peaks on the BBQ signal of B1 horizontal (B1 vertical similar but weaker) :

Instability on 31/03/2012

- Observations: very slow coherent motion visible on the BBQ signal for B2:

B2 horizontal

B2 vertical

Summary

> Clear coherent instabilities were observed in three different configurations, mainly for B2 but in one case for B1 as well.

- The horizontal plane seems more affected than the vertical one.
- Only 230 A in the octupoles for all three cases.
- In two out of three cases, collimators at settings tighter than the "normal" tight settings in IR3 (most critical collimators) and emittances smaller than $2 \mu \mathrm{~m}$.rad.
, b3 decay at flat top was not yet compensated \rightarrow increase Q_{x}^{\prime} by ~3 units, decrease Q_{y}^{\prime} by -3 units \rightarrow can be a tentative explanation of why the horizontal plane seems more affected (Q^{\prime} ~ 5-6 is more critical than slightly negative Q^{\prime} for which the feedback stabilizes the beam).
\Rightarrow more studies to be done (and comparison with model) before drawing any conclusions,
\Rightarrow in collimation MD (end of April) we will study instabilities with tight settings.

