

Beta Beams, EUROnu WP4

One of the Beta Beam Challenges:

Collective Effects

Christian Hansen

20/01/2011, EUROnu Annual Meeting, RAL

Many thanks to: E. Benedetto, A. Chancé, K. Li, E. Metral, N. Mounet, G. Rumolo, B. Salvant & E. Wildner

BB Collective Effects Studies

- Instability studies are important for the Beta Beam project, since
 - High intensity ion beams are foreseen
 - Collective Effects could limit the final performance
- Will study all machines
 - Today <u>only</u> the Decay Ring

- Will study all possible reasons for instabilities
 - Today <u>only</u> results from single bunch

"Transverse Resonance Broad Band Impedance"

3 Tools

- Three ways to find the Bunch Intensity Limit, N_bth:
 - A multi-particle tracking program in time domain, "HEADTAIL"

G. Rumolo et ali, CERN-SL-Note2002-036-AP

A theoretical program in frequency domain, "MOSES"

Y.H.Chin CERN-LEP-TH/88-05

Peak current values into a coasting beam formula gives the "Coasting Beam Equation" (here for ξ=0):

$$\mathcal{N}_{b_{x,y}}^{th} = \frac{32}{3\sqrt{2}\pi} \frac{R|\eta|\varepsilon_l^{2\sigma}\omega_r}{\langle\beta\rangle_{x,y}} Z^2\beta^2 cR_\perp$$

E. Métral, CERN, Overview of Single-Beam Coherent Instabilities in Circular Accelerators

3 Tools

- Three ways to find the Bunch Intensity Limit, N_bth:
 - A multi-particle tracking program in time domain, "HEADTAIL"

G. Rumolo et ali, CERN-SL-Note2002-036-AP

A theoretical program in frequency domain, "MOSES"

Y.H.Chin CERN-LEP-TH/88-05

Peak current values into a coasting beam formula gives the "Coasting Beam Equation" (here for ξ=0):

$$\mathcal{N}_{b_{x,y}}^{th} = \frac{32}{3\sqrt{2}\pi} \frac{R|\eta|\varepsilon_l^{2\sigma}\omega_r}{\langle\beta\rangle_{x,y}} Z^2\beta^2 cR_\perp$$

E. Métral, CERN, Overview of Single-Beam Coherent Instabilities in Circular Accelerators

\mathbf{R}_{\perp} = "Shunt Impedance" (see next slide)

C

Ш

C

Σ

-<

F

4

Ш

Т

R_{I} of the DR

Detailed calculations of Transversal Shunt Impedance, R_{\perp} , require design assumptions of ALL DR components, instead:

Private Discussions

with G. Rumolo

- Ш Let's estimate R_{\perp}^{DR} based on a machine with same U circumference as DR; SPS ($R_{\perp}^{SPS} = 20 M\Omega/m$)
 - Modern, smooth design of the vacuum pipe compare to old SPS \rightarrow Improvement by factor 10

 $\rightarrow R_{\perp}^{DR} \sim 2 M\Omega/m$

- The DR is a less general machine than the SPS (not required to handle many type of beams)
- No need for as many kickers as SPS (and modern) kicker design) → Improvement by factor 2

 $\rightarrow R_{\perp}^{DR} \sim I M\Omega/m$

Further; in 20 years improved Broad Band Feedback System

Ζ

٩

Ш

Σ

R_{I} of the DR

Detailed calculations of Transversal Shunt Impedance, R_{\perp} , require design assumptions of ALL DR components, instead:

Private Discussions

with G. Rumolo

- Ш Let's estimate R_{\perp}^{DR} based on a machine with same circumference as DR; SPS ($R_{\perp}^{SPS} = 20 M\Omega/m$)
 - Modern, smooth design of the vacuum pipe compare to old SPS \rightarrow Improvement by factor 10

 $\rightarrow R_{\perp}^{DR} \sim 2 M\Omega/m$

- The DR is a less general machine than the SPS (not required to handle many type of beams)
- No need for as many kickers as SPS (and modern kicker design) -> Improvement by factor 2

 $\rightarrow R_{\perp}^{DR} \sim I M\Omega/m$

Further; in 20 years improved Broad Band Feedback System

Ζ

٩

Ш

Σ

 $\mathbb{N}_{h}^{\text{th}}$ vs. \mathbb{R}_{I} in $\mathbb{D}\mathbb{R}$

C. Hansen, CERN, NUFACT10

Collective Effect Studies of a

Beta Beam Decay Ring

- According to the Coasting Beam Equation (CB Eq.) \mathbf{R}_{\perp} is the only parameter not fixed by FP6 design
- Let's find required shunt impedance, R_{\perp}^{req} ;

C. Hansen, CERN, NUFACT10 $\mathbb{N}_{h}^{\text{th}}$ vs. \mathbb{R}_{I} in $\mathbb{D}\mathbb{R}$ Collective Effect Studies of a Beta Beam Decay Ring According to the Coasting Beam Equation (CB Eq.)

- \mathbf{R}_{\perp} is the only parameter not fixed by FP6 design
- Let's find required shunt impedance, R₁^{req};

DR Intensity Limit for FP6 Lattice

			۸ 1	1		:		10-4			
	$R_{\perp}^{DR} = $ Bunch Inte		ensity Lim	it, N ^{bth}	Note; In Donini's table $SF = IU^{-1}$ A. Donini, Summa						Summary
	Ι MΩ/m	[el2]	[% of /	b ^{nom}]	И	vhile	we are u	sing	$SF = 5 \cdot 10$	-3 on Beta-	Beams
	⁶ He	5.0	10	0		Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$]
	¹⁸ Ne	0.6	16			⁶ He ¹⁸ Ne	$ar{\Phi}_0=2.9 \ \Phi_0=1.1$	5 5	5×10^{-4}	No Sensitivity	
_	⁶ He	5.0	52								
Z	¹⁸ Ne	0.6	32			⁶ He	$\overline{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity	-
	⁶ He	5.0	52			⁶ He	$\Phi_0/2$ $\bar{\Phi}_0 \times 2$	2	1×10^{-3}	No Sensitivity	-
_	¹⁸ Ne	0.6	81			¹⁸ Ne ⁸ Li	$\Phi_0/5$ $\bar{\Phi}_0$	8	1.5×10^{-3}	3×10^{-2}]
	⁸ Li	3.0	60			⁸ B	Φ_0	5			
_	⁸ B	1.1	59				_				
A A	⁸ Li	3.0	30)		⁸ Li ⁸ B	$\Phi_0 \times 2$ $\Phi_0 \times 2$	5 5	7×10^{-4}	1.5×10^{-2}	
	⁸ B	1.1	29			⁸ Li ⁸ B	$\overline{\Phi}_0 \times 5$ $\Phi_0 \times 5$	5 5	2×10^{-4}	8×10^{-3}	
	⁸ Li	3.0	12			⁸ Li	$\overline{\Phi}_0$	3	$1.7 imes 10^{-3}$	3×10^{-2}	1
	⁸ B	1.1	12			⁸ B ⁶ He	Φ_0 $\overline{\Phi}_0$	5 2			
		t <u>sps</u>	⁸ Li ⁸ B	6He		⁸ Li ⁸ B	$\overline{\Phi}_0 \times 2$	3	7×10^{-4}	$1.5 imes 10^{-2}$	
	$m = \frac{\Phi_0 L_{circ} t_{sps}}{N_{bunches} L_{eff} T_{eff}^{year}} \begin{pmatrix} 1 - 2^{-\gamma t_1/2} \end{pmatrix} \frac{60}{30} \frac{59}{29} \frac{100}{50}$					⁶ He	$\Phi_0 \times 2$ $\bar{\Phi}_0 \times 2$	2			
iom =						⁸ Li ⁸ B	$\overline{\Phi}_0 \times 5$ $\Phi_0 \times 5$	3 5	3×10^{-4}	8×10^{-3}	
			12 12	21		⁶ He	$\bar{\Phi}_0 \times 5$	2			
				1	4						

Wednesday, January 26, 2011

N

Beyond FP6

Decay Ring Redesign

- So far all studies based on **EURISOL** FP6 parameters
- According to CB Eq. $N_{b_{x,y}}^{th} = \frac{32}{3\sqrt{2\pi}} \frac{R|\eta|\varepsilon_l^{2\sigma}\omega_r}{\langle\beta\rangle_{x,y}Z^2\beta^2cR_\perp}$ if we increase the slip $factor, <math>|\eta|$, the bunch intensity limit would increase \rightarrow Redesign of the DR lattice to increase $|\eta|$ which also increases the average beta function: A chance, next talk $\gamma_{tr} = 27$ $\left(|p_1| = 0.00127 \rightarrow |p_2| = 0.00276\right)$
- $\begin{array}{l} \gamma_{tr} = 27 \\ \rightarrow \\ \gamma_{tr} = 18.57 \end{array} \left\{ \begin{array}{l} |\eta_1| = 0.00127 \quad \rightarrow \quad |\eta_2| = 0.00276 \\ \langle \beta \rangle_{y1} = 173.64 \text{ m} \quad \rightarrow \quad \langle \beta \rangle_{y2} = 160.4 \text{ m} \end{array} \right.$
- $\rightarrow N_b^{th}$ increase by factor $(\eta_2/\eta_1)/(\beta_2/\beta_1)$
 - Matching the bunch in the bucket: \rightarrow Increase voltage by factor η_2/η_1

$$V_{rf} = 26.75 \text{ MV}$$

$$\frac{Q_s \beta c \tau_b}{2R|\eta|\delta_{max}} = 1$$
$$Q_s = \sqrt{\frac{hZeV_{rf}|\eta|}{2\pi\beta^2 E_{tot}}}$$

Ŋ

ш

Ш

ľ

Ľ

DR Intensity Limit for New Lattice

				Note: In Donini's table SE - 10-4						
	$R_{\perp}^{DR} =$	Bunch Inte	Inch Intensity Limit, N _b th		Note; in Donini's table Sr - IU ' A. Donini, Summa					
	I MΩ/m	[el2]	[% of Nb ^{nor}	ני	while	we are u	sing S	$SF = 5 \cdot 10$	-3 on Beta-	Beams
	⁶ He	10	224		Ions	Fluxes [10 ¹⁸]	Years	$(\sin^2 2\theta_{13})_{min}$	NH, $(\sin^2 2\theta_{13})_{min}$	
ហ	¹⁸ Ne	1.2	35		⁶ He ¹⁸ Ne	$ar{\Phi}_0=2.9 \ \Phi_0=1.1$	5 5	5×10^{-4}	No Sensitivity	
	⁶ He	10	112							
Z	¹⁸ Ne	1.2	70		⁶ He	$\overline{\Phi}_0 \times 2$	2	6×10^{-4}	No Sensitivity	
	⁶ He	10	112		⁶ He	$\bar{\Phi}_0 \times 2$	2	1×10^{-3}	No Sensitivity	
	¹⁸ Ne	1.2	175		¹⁸ Ne ⁸ Li	$\Phi_0/5$ $\bar{\Phi}_0$	8	1.5×10^{-3}	3×10^{-2}	
	⁸ Li	5.9	129		⁸ B	Φ_0	5			
	⁸ B	2.1	127		0-	-				
	⁸ Li	5.9	65		⁸ Li ⁸ B	$\Phi_0 imes 2$ $\Phi_0 imes 2$	5 5	7×10^{-4}	1.5×10^{-2}	
	⁸ B	2.1	64		⁸ Li ⁸ B	$\overline{\Phi}_0 \times 5$ $\Phi_0 \times 5$	5 5	2×10^{-4}	8×10^{-3}	
4	⁸ Li	5.9	26		⁸ Li	$\bar{\Phi}_0$	3	1.7×10^{-3}	3×10^{-2}	1
	⁸ B	2.1	25		⁸ B ⁶ He	Φ_0 $\bar{\Phi}_0$	5 2			
		t_{sps} -1	⁸ Li ⁸ B ⁶ H	е	⁸ Li ⁸ B	$\overline{\Phi}_0 \times 2$ $\Phi_0 \times 2$	3	7×10^{-4}	$1.5 imes 10^{-2}$	
	L irct sps year	$1 - 2^{-\gamma t_1/2}$	129 127 22	4	⁶ He	$\bar{\Phi}_0 \times 2$ $\bar{\Phi}_0 \times 2$	2			
nom =	Polcie Teff Nounches Leff Teff	Policie Steff Teff Nounches Leff Teff		2	⁸ Li ⁸ B	$\overline{\Phi}_0 \times 5$ $\Phi_0 \times 5$	3 5	3×10^{-4}	8×10^{-3}	
			26 25 4		⁶ He	$\bar{\Phi}_0 \times 5$	2			J
			• •							

Wednesday, January 26, 2011

N

Conclusions

- Transversal Broad Band Impedance enforces redesign of the Beta Beam Decay Ring (Other collective effects still to be studied)
- A new design of the Decay Ring (by A. Chancé)
 - Increases slip-factor, voltage and straight fraction
 - More of the Beta Beam scenarios are allowed (assumed R_{\perp}^{DR} = I MΩ/m):

$R_{\perp}^{DR} =$	Bunch Intensity Limit, N _b th					
I MΩ/m	[el2]	[% of Nbnom]				
۴He	5.0	100				
¹⁸ Ne	0.6	16				
⁶ He	5.0	52				
¹⁸ Ne	0.6	32				
⁶ He	5.0	52				
¹⁸ Ne	0.6	81				
⁸ Li	3.0	60				
8B	1.1	59				
⁸ Li	3.0	30				
⁸ B	1.1	29				
⁸ Li	3.0	12				
⁸ B	1.1	12				

$R_{\perp}^{DR} =$	Bunch Intensity Limit, N _b th					
I MΩ/m	[el2]	[% of Nbnom]				
6He	10	224				
¹⁸ Ne	1.2	35				
6He	10	112				
¹⁸ Ne	1.2	70				
6He	10	112				
¹⁸ Ne	1.2	175				
⁸ Li	5.9	129				
⁸ B	2.1	127				
⁸ Li	5.9	65				
⁸ B	2.1	64				
⁸ Li	5.9	26				
⁸ B	2.1	25				

Thank You?

Backup Slides

- Same study in longitudinal plane
- $Z_{||}(\omega) = \frac{1}{1 + iQ} \left(\int_{-\infty}^{\infty} \frac{1}{1 + iQ} \right)^{-1} \left(\int_{-\infty}^{\infty} \frac{1}{1 + i$ Ongoing HEADTAIL simulations, but can't use MOSES since only for \perp
- Same with Narrow Band

Same with Resistive Wall Impedance

SPS

 $R_{||}$

 $\left(\frac{\omega_r}{\omega_r}\right)$

 $\frac{\omega}{\omega}$

Same with Space Charge

Same with the already existing SPS & PS

 \mathbf{Y}

⊢

Resonance Impedance

- Wake Fields (time domain; W(t)) can
 - be trapped in pipe cavities
 - cause "Resonance Impedance"
- Resonance Impedance (frequency domain; $Z(\omega) = \mathcal{F}[W(t)]$),
 - in the Transverse plane can be modeled by an **RLC** circuit as:

For low Quality Factor ($Q \approx I$) the Wake Field is short lived and the impedance is "Broad Band"

nce"

C

Ш

Ŀ

ш

 \mathbf{Y}

٩

3

Resonance Impedance

- Wake Fields (time domain; W(t)) can
 - be trapped in pipe cavities
 - cause "Resonance Impedance"
- Resonance Impedance (frequency domain; $Z(\omega) = \mathcal{F}[W(t)]$),
 - in the Transverse plane can be modeled by an RLC circuit as:

- For low Quality Factor ($Q \approx I$) the Wake Field is short lived and the impedance is "Broad Band"
- Will show results from *"Transverse Resonance Broad Band Impedance"*

C

Ш

Ŀ

ш

 \mathbf{Y}

٩

≥

E_{I} Scan for 18Ne (1/T)th = 400Hz

Shunt Impedance

• The "Shunt Impedance", R_{\perp} , is the main parameter in the RLC model of the Resonance Impedance

$$Z_{\perp}(\omega) = \frac{R_{\perp})\frac{\omega_r}{\omega}}{1 + iQ\left(\frac{\omega_r}{\omega} - \frac{\omega}{\omega_r}\right)}$$

Modeling existing machines the same way we have

	PS	SPS	LHC (at top energy)	LHC (no collimators)	RHIC
<mark>R⊥ [M</mark> Ω/m]	3	20	30	2	2

E. Métral

W. Fisher et. ali, Analysis of Intensity Instability Threshold at Transition in RHIC

C

Ш

L

ш

Y

٩

3