

ICE Section Meeting, 25/1/11

Production Ring for Beta Beams: status, news and plans

Elena Benedetto NTU-Athens & CERN

The Beta Beams

- Aim: Production of e⁻ (anti-) v beam from β decay of radio-isotopes
- ⁸Li, ⁸B ions
 - Originally introduced because lack of ¹⁸Ne (maybe ok now)

- Longer baseline for oscillation experiments \rightarrow mass hierarchy
- Studies started in 2009, within EUROnu
- High intensity
 - Implications for production, acceleration, storage
 - Assuming same losses and/or efficiencies as for ⁶He,¹⁸Ne (only ~few % reach Decay Ring) \rightarrow Need 10¹⁴/s of ⁸Li, ⁸B @ source

Production Ring

- Compact ring: ~10m circumference
- Inverse kinematics:

Li beam @ ~25MeV and D or ³He supersonic gas-jet target

• "ISOL" collection device for the ⁸Li, ⁸B radioisotopes

Ionization cooling

- Energy losses (dE/ds) in the target material (Bethe-Bloch)
- Only longitudinal component recovered in RF cavities
 - → Transverse emittance shrinks
- Cooling in 6D
 - Heating in longitudinal
 - Need coupling between transverse and longitudinal:
 - → Dispersion & wedgeshaped target

$$\sum J_i = 1 + 1 + \frac{\partial}{\partial E} \left(\frac{dE}{ds}\right)\Big|_{\Delta x = 0} \begin{cases} 0.4 & \text{for } {}^6\text{Li} \\ 0.01 & \text{for } {}^7\text{Li} \end{cases}$$

Preliminary lattice

M. Schaumann, Aachen

Particle		⁷ Li
Energy	E_c	25 MeV
Relativistic gamma	γ_r	1.00383
Beam rigidity	B ho	0.636 T m
Transition γ	γ_t	3.58
Tune	$Q_{x,y}$	2.58, 1.63
Natural chromaticity	$Q'_{x,y}$	-3.67, -3.58
β @ target	$\beta_{x,y}^*$	2.62 m, 0.35 m
Dispersion @ target	$D_{x,y}^*$	0.523 m, 0 m
Target thickness	t_0	0.27 mg/cm^2
	n_t	10^{19} atoms/cm ²
Energy losses @ target	E_{BB}	$\sim 0.30~{\rm MeV}$

- C=12m
- Normal-conducting magnets
- Lattice \rightarrow to be optimized
- Charge-exchange injection Li⁺¹
 → to be designed

6D tracking simulations

- SixTrack (collimation version)
- Target implemented as a special collimator element:
 - Analytical formulae for Multiple Coulomb Scattering and Energy Losses (benchmarked w. Geant4 simulations (J.Wehner, Aachen))
 - Coupling w. MonteCarlo code FLUKA ongoing

 \rightarrow V.Vlauchoudis, D.Sinuela, E.B. (CERN)

- Rms emittances & Intensity evolution diagnostics
- SixTrack is for protons \rightarrow need proton equivalent ring (same Bp, same $\Delta p/p$ recovered in RF)
- Benckmark w. MADX / PTC \rightarrow OK!

6D tracking simulations

• Emittances H,V, dp/p and intensity evolution for different target wedge angles.

Technological issues & feasibility

 High density gas-jet target (10¹⁹ atoms/cm² thick) in vacuum environment

Factor 10⁴ larger !!! then exisiting targets

Such gas-jet target densities would be OK in fusion or space applications,

BUT we need good vacuum for the RF cavity!

Lithium target

- Possible solution \rightarrow go for a liquid target
 - (energy deposited ~300kW)
 - Better in direct kinematics: D or ³He beam & Li target
- Investigate optimum projectile energy
 - Stopping power, target thickness, cross section, rev. frequency
- How to collect ⁸Li/⁸B?
 - angle (larger) & velocity (smaller) of produced ions
 - \rightarrow do we still need to stopping + diffusion/effusion?
 - \rightarrow or... (electrostatic) separator?
- Implications for the stored beam (i-cooling, lifetime,...)

Direct vs. inverse kinematics

INVERSE

[©] ⁸Li/⁸B emitted at θ~10° similar energy as projectile

- Supersonic jet target
 Efficient cooling removal
 Low densities
- Collection + diff./effusion

DIRECT

- 30° emission angle and smaller velocity
- ⊗ Larger M.C. Scattering
- Larger emittance, less SC
- Solid/liquid target
- Cooling / jet instabilities
- High densities
- Collection? Spectrometer?

See also D. Neuffer, NIM A 585 (2008) 109

Some (preliminary) studies

T. Weber (student from RTWH Aachen)

- Direct kinematics + solid/liquid target
 - \rightarrow Factor 1000 gained
 - But still factor 10(100) missing
 - (assuming beam Nb=10¹² ions)
 - The products
 - Will be emitted in a wide cone angle
 - And will exit the target (~10µm thick)
 - We may gain in higher energies (from 10 to 24 MeV)
 - Cross-section smaller, but...
 - Can use "thicker" target
 - Rev frequency increases more
 - BUT also energy straggling increases !!! TO BE CHECKED

Liquid Lithium target technology

- Energy deposited $\sim 300 kW$, thickness $\sim 10 \mu m$
- Liquid Lithium target technology for
 - Neutron production (but ~mm thick)
 - SARAF, LiLiT
 - IFMIF, irradiation facility for fusion materials
 - Heavy ion strippers
 - → see Y. Momozaki, J. Nolen, C. Reed, V. Novick, J. Specht. Development of a liquid lithium thin film for use as a heavy ion beam stripper. Journal of Instr., 4(04):P04005, 2009.
 - For U beam ~10-20MeV/n, ~few 10 μ m
 - Still R&D, they succesfully produced thin liquid films (Lithium and simulants), also looking at beam power deposition & instabilities
 - Very promising!

Next steps

- Direct kinematics feasibility:
 - Identify possible show-stoppers
 - Production rates
 - Realistic target thickness (and beam energy)
 - New collection device (or a separator, if feasible/preferred)
- Lattice optimization and injection design (in either direct/reverse)
- Beam-Target interaction w. Monte-Carlo codes:
 - Use correct physics inside tracking simulations (since we are at the limits of ionization cooling capabilities...)
 - Integration of FLUKA in SixTrack (with V. Vlachoudis, D. Sinuela)

Next steps

- Cross section measurements for ⁶Li(³He,n)⁸B
 - At INFN-Legnaro
 - Proposal submitted by V.Kravtchouk and E.Wildner
 - 3 weeks beam in April or May
- Prepare meeting w. Carlo Rubbia
- New collaborator for i-cooling simulations
 - Gianmaria Collazuol, researcher form Padova University
 - Meeting at CERN in February to define work plan

Look at other kind of rings

- FFAG-ERIT (Emittance Recovery Internal Target)
 - see Y.Mori, NIM A 562 (2006) 591; K.Okabe et al, IPAC10, EPAC08,...
 - Proton FFAG with internal Be target to produce neutron for BNCT
 - Zero Q', large acceptance & no need of longitud. cooling
 - Visited KURRI lab. in Nov'10 + invited to FFAG'10 workshop
 - Investigation of possible experiment \rightarrow in stand-by...
 - Simulations with code ICOOL to be adapted to our ions, but...
- Why not? Use existing CERN rings
 - e.g. AD, LEIR or ELENA(proposed), if available for us in >20 years...
 - Stochastic and/or electron cooling available
 - Reduce costings, have sinergies w. other CERN projects
 - Check production rates!!!

Conclusions

- The studies for the ⁸Li and ⁸B Production Ring as proposed by [C.Rubbia et al.] are studied within EUROnu
- A preliminary design is available.
- Optics studies done for the ⁷Li(d,p)⁸Li inverse kinematics, can be scaled to direct kinematics and B production
- The lattice requires tuning to maximize i-cooling efficiency (e.g. reduce beta at the target).
- 6D tracking tools (based on SixTrack) fully in place, predict what expected from i-cooling analytical estimations.
- The code SixTrack includes also the high order effects, e.g. chromaticity and second order dispersion, which are important.

Conclusions

- Progresses in the feasibility studies
- The thickness (10¹⁹atoms/cm²) required for gas-jet target in vacuum environment is a major issue.
 - Existing target reach 10¹⁵atoms/cm²
- The direct kinematics approach with a liquid Lithium target
 looks very promising
- R&D for thin liquid-lithium film used as heavy-ions strippers, we could probably profit from...
- Strong interest (reciprocal) from FFAG and mu-cooling communities
- Fruitful collaboration w. INFN Legnaro and Padova Univ.

Acknowledgments

...tried to list all people which helped me with material, ideas, answers, code support, but I'm sure I forgot many more:

- M. Schaumann, T. Weber, J. Wehner (RWTH Aachen),
- G. Arduini, J. Barranco, C. Bracco, M. Chanel, P. Chiggiato, C. Hansen, R. Garoby, B. Holzer, M. Martini, V. Previtali, G. Prior, F. Schmidt, V. Vlauchoudis, E. Wildner (CERN),
- D. Neuffer (FNAL)
- O. Boine-Frankenheim (GSI), A. Koukaz (Munster U.)
- Y. Mori, K. Okabe (KURRI),
- S. Machida, M. Zisman, S. Berg,...(NuFact community)
- M. Cianausero, P. Mastinu, V. Kravchouk, (INFN, Legnaro)

Back-up slides

FFAG-ERIT @ KURRI (Osaka)

Schematic layout of FFAG-ERIT

K.Okabe et al, IPAC10, EPAC08,...

FFAG-ERIT @ KURRI (Osaka)

What if I could use ERIT for my ions

	ERIT p+ ⁹ Be→n+ ⁹ B	d+ ⁷ Li→p+ ⁸ Li
Energy	11 MeV	5.5 MeV
Target	5µm ⁹ Be	10 µm ⁷ Li
ΔE_{RF}	43keV	104keV
τ=(dp/p) ⁻¹	510 turns	105 turns
ε (x10 ⁻⁶) (full)	3388 / 1968	1115 / 648
σ (cm) (full, with dp/p=5%)	8.3 / 5.1	5.8 / 2.9
Jz	-1.41	-1.17

- Same Bp=0.48 Tm
- Looks feasible! (even better performance than actual configuration)

Cooling rates and equilibrium emittance (1)

Cooling rates and equilibrium emittance (2)

If now we introduce Dispersion (and a triangular target shape):

$$\frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) = \frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) \Big|_{\Delta x = 0} + \underbrace{\left(\frac{dE}{ds} \right) \frac{1}{\rho_0} \frac{d\rho}{dx} \frac{D}{\beta cp}}_{\text{at a different orbit } \Delta x = D \Delta p/p}$$

Cooling rates and equilibrium emittance (3)

If now we introduce Dispersion (and a triangular target shape):..

Cooling can be transferred from transverse to longitudinal thanks to Dispersion + triangular target

can also introduce coupling x-y

Since sum of the three partition number is always the same, is computed for $D_x=0$:

$$\sum J_i = 1 + 1 + \frac{\partial}{\partial E} \left(\frac{dE}{ds} \right) \Big|_{\Delta x = 0} \begin{cases} 0.4 & \text{for } {}^6\text{Li} \\ 0.01 & \text{for } {}^7\text{Li} \end{cases}$$

Due to Bethe-Bloch shape, NO possibility to effectively $cool \rightarrow but$ only to keep a constant emittance or not to heat it "too much" E. Benedetto, ICE Meeting, 25/1/11

Production: requirements

- Summing-up all losses in accelerator chain
 - Source + Linac RFQ: ~70%
 - RCS injection+capture: 30%
 - Decay losses: 20%(¹⁸Ne) 50%(⁶He)
 - Momentum collimation: up to 50%
- Only 8.4%(¹⁸Ne)-5.2%(⁶He) of produced ions is stored in the DR

We need to produce (and collect!!!) 2-3 10¹³ (x5) ions/s

What if I could use ERIT-FFAG for my ions

Stolen from K.Okabe's presentation

 FFAG-ERIT ring 	
_ circ. beam current	70mA
_ beam life(# of turns)	1000turns
_ acceptance	Av>500mm.mrad(rms), dp/p>+-5%(full)
_ magnet	large aperture, small fringing filed
➡ gap height	15cm
_ rf cavity	N .
➡ frequency	20MHz(harmonic number :5
→ rf voltage	>200kV Injector
_ beam energy	11MeV
_ averaged beam current	70 μ A
Injector	
_ beam current	$>$ 70 μ A (20–200Hz, duty ~2%)
Neutron production targe	et
_ Be,10 μ m	heat load <6.6W/cm ² ,Lifetime>1 month
 Moderator 	
thermal+epithermal	>10 ⁹ n/cm ² /sec
gamma-ray fast neutron	Nuclear reactor level (IAEA)
_ Samma ray race near on	

Direct kinematics, results

$E_{kin}/{ m MeV}$	7.18	10					Torste	n Weber
$d/\mu{ m m}$	20	36	←	⁸ linr	oductio	n (Dhe	am)	
$\delta E/{ m MeV}$	0.089	0.123					Janij	
$\sigma_{\delta E}/{ m MeV}$	0.011	0.011						
$\langle \delta E/E$	0.012	0.012	\geq					
θ/mrad	1.89	1.82						
$\sigma/{ m mb}$	100	70						
P	$8.8 \cdot 10^{-7}$	$1.1 \cdot 10^{-6}$		~ -			_	
$N^{ion} \cdot s$	$1.9 \cdot 10^{13}$	$2.8 \cdot 10^{13}$		↓ ⁸ B	product	tion (³ H	e bean	ר)
	Г							
		$E_{m kin}/{ m MeV}$		5.5	10	15	20	25
		$d/\mu{ m m}$		1.9	5.5	11	19	28

	L _{kin} / Mev	0.0	10	10	20	20
	$d/\mu{ m m}$	1.9	5.5	11	19	28
	$\delta E/{ m MeV}$	0.056	0.103	0.148	0.203	0.249
	$\sigma_{\delta E}/{ m MeV}$	0.007	0.012	0.016	0.021	0.025
<	$\delta E/E$	0.0102	0.0103	0.0099	0.0102	0.0100
	$ heta/\mathrm{mrad}$	1.5	1.4	1.4	1.4	1.4
	$\sigma/{ m mb}$	20	10	4.5	2.7	2
	P	$1.7 \cdot 10^{-7}$	$2.4 \cdot 10^{-7}$	$2.2 \cdot 10^{-7}$	$2.3 \cdot 10^{-7}$	$2.5 \cdot 10^{-7}$
	$N^{ion} \cdot {}_{ m S}$	$2.62 \cdot 10^{11}$	$5.11 \cdot 10^{11}$	$5.63 \cdot 10^{11}$	$6.72 \cdot 10^{11}$	$8.19 \cdot 10^{11}$
		-				

Kinematics of the products Lithium 8

	$Cut_E/{ m MeV}$	$Cut_{\varphi}/\text{degree}$	N/%	$N^{ion}/10^{12}{ m \cdot s}$
2	0.5	5	41	7.79
	0.5	10	34	6.46
	0.5	15	27	5.13
	0.5	20	20	3.80
	0.5	25	14	2.66

(a) Results for 7.18 MeV kinetic energy of the deuterons and 20 μ m target thickness. N_0^{ton} is $1.9 \cdot 10^{13}$ /s.

$Cut_E/{ m MeV}$	$Cut_{\varphi}/\text{degree}$	N/%	$N^{ion}/10^{12} m \cdot s$
0.5	5	37	10.36
0.5	10	30	8.40
0.5	15	23	6.44
0.5	20	17	4.76
0.5	25	12	3.36

(b) Results for 10 MeV kinetic energy of the deuterons and 36 μ m target thickness. N_0^{ton} is $2.8 \cdot 10^{13}$ /s.

• 2-body kinematics

Geant4 simulation of the products

Kinematics of the products Boron 8

$Cut_E/{ m MeV}$	$Cut_{\varphi}/\text{degree}$	N/%	$N^{ion}/10^{11}{ m \cdot s}$
0.5	5	75	3.83
0.5	10	63	3.22
0.5	15	51	2.61
0.5	20	35	1.79
0.5	25	3	0.15
		the second se	

(a) Results for 10 MeV kinetic energy of the ³He and 5.5 μ m target thickness. N_0^{ion} is 5.11 \cdot 10¹¹/s.

$Cut_E/{ m MeV}$	$Cut_{arphi}/\mathrm{degree}$	N/%	$N^{ion}/10^{11}$ -s
0.5	5	65	5.32
0.5	10	55	4.50
0.5	15	45	3.69
0.5	20	34	2.78
0.5	25	19	1.56

(b) Results for 25 MeV kinetic energy of the ³He and 28 μm target thickness. N₀¹⁰ⁿ is 8.19 · 10¹¹/s.

Torsten Weber