Wire
Compensation
T. Rijoff, F.

Zimmermann

Longitudinal
pos

Simulations on beam beam compensation with wire

T. Rijoff, F. Zimmermann

November 23, 2011

Acknowledgements:

Wire
Compensation
T. Rijoff, F.

Zimmermann

Longitudinal

pos

Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle 2 / 3
Tests
summary
Detailed
results
Conclusions
R. Steinhagen
G. Sterbini
R. De Maria
E. Laface
E. Benedetto
U. Dorda

Outline

Wire Compensation
T. Rijoff, F.

Zimmermann

Longitudinal

pos

Transverse
pos and
current
Performed
Tests
Siability
Tune moved
Square wire
Crossing
angle 2 / 3
Tests
summary
Detailed
results
Conclusions
(1) Longitudinal pos

2 Transverse pos and current
(3) Performed Tests
(4) Stability
(5) Tune moved
(6) Square wire
(7) Crossing angle 2 / 3
(8) Tests summary
(9) Detailed results
(10) Conclusions

Previous studies

Wire

Studies based on to J.-P. Koutchouk's note: CERN-SL-2001-048-BI [4], wire position

- longitudinal position $=104.93 \mathrm{~m}$ after IP1 and IP5 ${ }^{1}$ [2]
- transversal position $=9.5 \sigma[1]$

$$
{ }^{1} \text { with } \beta^{*}=0.55 m, \beta_{x, y} \approx 1740 m \text { and } \Delta \mu \approx 0.25^{\circ}
$$

Tested cases: Longitudinal positions

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed results

Conclusions

- Alternative longitudinal positions ${ }^{2}$

Test	IP1 dist m	β_{x} m	β_{y} m	IP5 dist m	β_{x} m	β_{y} m	
Nominal	104.93	1738.14	1734.77	104.93	1738.14	1734.78	BEST
TCT	-145.84	1581.02	635.83	-147.52	1574.90	602.24	
Q5	198.89	105.92	503.04	198.89	105.92	503.04	WORST
Additional test							
TCT Opt β 1	-145.84	1581.02	635.83	149.53	563.15	1567.60	
TCT Opt $\beta 2$	149.53	1574.90	602.26	-147.52	1574.90	602.24	MAYBE

${ }^{2}$ see R. Steinhagen "LHC BBC - a first proposal" [5]

Tested cases: Transverse position and Current

Wire Compensation
T. Rijoff, F.

Zimmermann

Longitudinal

pos

Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle 2 / 3
Tests
summary
Detailed
results
Conclusions

Transverse positions tested ${ }^{3}$

- wire at 9.5σ
- wire at 11σ
${ }^{3}$ see R. Steinhagen "LHC BBC - a first proposal" [5]

Current calculation for 9.5σ

Wire
9.5σ best current is given by :

$$
I_{O P T}=\frac{n c q N}{L_{w}}
$$

$$
\begin{aligned}
\mathrm{n} & =\text { Long Range interactions } \# \rightarrow 32 \\
\mathrm{c} & =\text { Speed of light } \rightarrow 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \\
\mathrm{q} & =\text { Proton charge } \rightarrow 1.602 \cdot 10^{-19} \mathrm{C} \\
\mathrm{~N} & =\text { \# particles per opposite bunch } \rightarrow 1.15 \cdot 10^{11} \\
L_{w} & =\text { wire length } \rightarrow 1 \mathrm{~m}
\end{aligned}
$$

Current at 11σ

Wire
Compensation
T. Rijoff, F.

Zimmermann

Longitudinal

pos

Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle 2 / 3
Tests
summary
Detailed
results
Conclusions

Currents tested at 11σ

- best results: wire current like at $9.5 \sigma \Rightarrow$

$$
I_{O P T}=176.8 \mathrm{~A}
$$

- current value quadratically scaled $[6] \Rightarrow I=237.0 A$

$$
I=\frac{11^{2}}{9.5^{2}} \cdot I_{O P T}
$$

Performed tests

Wire

To analyse the different cases we performed the following tests
Footprint analysis : 10000 particles tested, $[0 \sigma, 6.5 \sigma]$ initial distribution, 50.000 turns ${ }^{4}$
Instabilities analysis: 902 particles tested, $[0 \sigma, 10 \sigma]$ initial distribution, 300.000 turns.

Simulations made with bbtrack (Ulrich Dorda) [3]
${ }^{4}$ Modified gaussian (x,y) distribution \rightarrow more particles in [$4 \sigma, 6.5 \sigma$] , for more details see [33]

Stability Criterion

bbtrack iterative process

- two particles tracked (shifted and not shifted)
- normalize their coordinates (3)
- for each turn i
- Calculate the 4d cartesian distance $d_{n}(i)$
- Particle marked as unstable if

$$
\frac{d_{n}(i)-d_{n}(0)}{2 d_{n}\left(\frac{i}{2}\right)}>K \text { In the test: } K=3
$$

Dynamical Radius, choise criterion

Last observed radius where stable particles count is higher than unstable one.

Tune moved

Wire
Compensation
T. Rijoff, F.

Zimmermann

Longitudinal
pos
Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle 2 / 3
Tests
summary
Detailed
results

Central tune moved back to the original value. In IP 1

$$
\begin{aligned}
\Delta Q_{x} & =-\frac{r_{p} I_{w} L_{w} \beta_{x}}{2 \pi \gamma q c d^{2}} \\
\Delta Q_{y} & =\frac{r_{p} I_{w} L_{w} \beta_{y}}{2 \pi \gamma q c d^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\beta_{u} & =\beta \text { at wire position }(\mathrm{u}=\mathrm{x}, \mathrm{y}) \\
\mathrm{d} & =\text { wire } \mathrm{y} \text {-distance }
\end{aligned}
$$

in IP 5 reversed signs and d = wire x-distance (34)

Square wire

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed
Tests
Simulated square wire (1 mm side) $\Rightarrow 4$ point-like wires.
Example: Nominal Position Wire, 9.5σ
IP1

IP5

x pos	y pos m			
m		\left\lvert\,\Rightarrow	$(-0.00988,0.0005)$	
:---:	:---:	:---:		
$(-0.00988,-0.0005)$	$(-0.00888,0.0005)$ $(-0.00888,-0.0005)$			
-0.00888	0.00000	\right.		

Crossing angle 2 / 3

Wire

Crossing

Additional test:

Crossing angle set to 2 / 3 of nominal values

Affects

- Wire position
- Particles distribution (removed from test particles with radius $>4 \sigma$)

Test summary: Footprint

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Fractional footprint
2 head on (ip1 and 5)

Test summary: Footprint

Wire Compensation T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Test $9.5 \quad \sigma 176 \mathrm{~A}$

Test summary: Footprint part 2

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Test	$9.5 \sigma 176 \mathrm{~A}$	$11 \sigma 176 \mathrm{~A}$	$11 \sim 237 \mathrm{~A}$
Wire at TCT			
Wire at TCT Tune Moved			
Wire at Q5			
Wire at Q5 Tune Moved			

Test summary: Footprint part 3

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Test	$9.5 \sigma 176 \mathrm{~A}$	$11 \sigma 176 \mathrm{~A}$	$11 \sigma 237 \mathrm{~A}$		
Wire at TCT mod					
Wire at TCT mod Tune Moved					

Test summary: Footprint Crossing Angle 2/3-1

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Test	$6.3 \sigma 176 \mathrm{~A}$	$7.3 \sigma 176 \mathrm{~A}$	$7.3 \sigma 237 \mathrm{~A}$
Wire at 105			
Wire at TCT			

Test summary: Footprint Crossing Angle 2/3-2

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Test	6.3 न 176 A	7.3 न 176 A	7.3 O 237 A
Wire at TCT Tune moved back			
Wire at TCT mod 2			

Test summary: Dynamical aperture

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed results

Conclusions

Test summary: Dynamical aperture

Wire

 CompensationT. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed results

Test	Wire Pos σ	Curr A	R σ	Inst Part $\%$	R optQ σ	Inst Part optQ $\%$
HO Long Range			8.50	30.7		
Wire at 105	9.50	177	8.50	19.8		
Square Wire at 105	9.50	177	9.00	16.4		
Wire at 105	11	177	9.75	14.7		
Square Wire at 105	11	177	9.25	18.4		
Wire at 105	11	237	8.25	34.4		
Square Wire at 105	11	237	9.50	14.9		28.2
Wire at TCT	9.5	177	8.25	30.8	7.75	8.5
Wire at TCT	11	177	8.75	24.6	8.5	3.0
Wire at TCT	11	237	8.50	26.5	8.50	3.9
Wire at Q5	9.5	177	5.75	52.5	7.00	8.25
Wire at Q5	11	177	7.50	35.9	7.75	
Wire at Q5	11	237	7.00	45.6		
Wire at TCT mod	9.5	177	7.00	43.1		
Wire at TCT mod	11	177	8.50	27.9		
Wire at TCT mod	11	237	8.50	30.5		
Wire at TCT mod 2	9.5	177	8.75	20.3		
Wire at TCT mod 2	11	177	9.00	23.4		
Wire at TCT mod 2	11	237	8.75	22.3		

Dynamical aperture Crossing Angle 2 / 3

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and current

Performed Tests

Stability
Tune moved
Square wire

Test	Wire Pos σ	Curr A	R σ	Inst Part $\%$	R optQ σ	Inst Part optQ $\%$
HO Long Range			5.25	62.08		
Wire at 105	6.33	177	5.25	35.03		
Wire at 105	7.33	177	6.00	35.70		
Wire at 105	7.33	237	6.00	30.16		
Wire at TCT	6.33	177	2.50	37.92	4.00	33.92
Wire at TCT	7.33	177	4.75	38.69	5.00	38.69
Wire at TCT	7.33	237	3.00	46.45	4.75	
Wire at TCT 2	6.33	177	5.50	31.37		
Wire at TCT 2	7.33	177	5.50	41.46		
Wire at TCT 2	7.33	237	5.75	36.14		

Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Wire at nominal position

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

$11 \sigma 176.76 \mathrm{~A}$

Wire at TCT , 11 $\sigma 176.76 \mathrm{~A}$

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

	IP 1 m	IP 5 m
s	26513.04	13181.77
from IP	-145.84	-147.52
x pos	0.00000	-0.00979
y pos	-0.00622	0.00000
β_{x}	1581.02	1574.90
β_{y}	635.83	602.24

Dynamical Aperture

Radius 8.75σ

Wire at TCT modified , 11σ 176.76 A

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed results

Conclusions

Dynamical Aperture

Radius 8.50σ

	IP 1					
m	IP 5					
m		$	$	s	26513.04	13478.82
:---:	:---:	:---:				
from IP	-145.84	149.53				
x pos	0.00000	-0.00585				
y pos	-0.00622	0.00000				
β_{x}	1581.02	563.15				
β_{y}	635.83	1567.60				

Wire at TCT modified $2,11 \sigma 176.76$ A

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed
results
Conclusions

	IP 1 m	IP 5 m
s	149.73	13181.77
from IP	149.73	-147.52
x pos	0.00000	-0.00979
y pos	-0.00976	0.00000
β_{x}	559.44	1574.90
β_{y}	1566.89	602.24

Dynamical Aperture

Radius 9.00σ

Wire at nominal position, $6.33 \sigma 176.76 \mathrm{~A}$ Crossing Angle 2 / 3

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed Tests

Stability
Tune moved
Square wire
Crossing
angle $2 / 3$

Dynamical Aperture

Radius 5.25σ

Wire at nominal position, $7.33 \sigma 176.76 \mathrm{~A}$ Crossing Angle 2 / 3

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed
results
Conclusions

Dynamical Aperture

Radius 6.00σ

Wire at TCT , $7.33 \sigma 176.76$ A

Wire
Compensation
T. Rijoff, F.

Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing
angle $2 / 3$
Tests
summary
Detailed
results
Conclusions

Dynamical Aperture

Radius 4.75σ

Wire at TCT , $7.33 \sigma 176.76 \mathrm{~A}$

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse pos and current

Performed Tests

Stability
Tune moved
Square wire
Crossing angle $2 / 3$

Tests
summary
Detailed
results
Conclusions

Central tune moved back
nitial particles distribution - Turn of instability
ho ip $1 \mathrm{p5}+161$ I areach $\mathrm{ho}+$ wire

Dynamical Aperture

Radius 5.00σ

Fractional footprint ho ipl ips +16 lr at each ho + wire (long pos: 13182, 26513 - transv pos: 7.33 sigma curr: 176.76 A - angle $2 / 3$ with rot)

Wire at TCT mod 2, 7.33σ 176.76 A

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed Tests

Stability
Tune moved
Square wire
Crossing
angle $2 / 3$
Tests
Fractional footprint
ho ip1 ip5 + 16 Ir at each ho + wire (long pos: 149.73, 13181.77 - transv pos: 7.33 sigma curr: 176.76 A)

Dynamical Aperture

Radius 5.50σ

Conclusions and Outlook:

Wire

Wire compensation for the nominal LHC as been studied

- The best compensation is achieved with a wire at optimum location at 11σ
- Wire at the 2nd modified TCT location also promises a good performance
- Changing the point like wire with a squared wire with (side 1 mm) seems to gives better results
- The results seem encouraging also changing the crossing angle to 2 / 3 of nominal value

固 LHC BEAM－BEAM COMPENSATION USING WIRES AND ELECTRON LENSES， 2007.

围 J．－P．Koutchouk C．Fischer．
Reservations for beam－beam compensators in ir1 and ir5．
（LHC Engineering Change Order）， 2004.
E U．Dorda．
Bbtrack－a weak－strong long－range beam beam interaction simulation code．
http：／／ab－abp－bbtrack．web．cern．ch／ab－abp－bbtrack．
㫫 Jean－Pierre Koutchouk．
Correction of the long－range beam－beam effect in Ihc using electro－magnetic lenses．oai：cds．cern．ch：513685． （CERN－SL－2001－048－BI）：4 p，Jul 2001.

Wire Compensation
T. Rijoff, F. Zimmermann

Longitudinal pos

Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle $2 / 3$
Tests
summary
Detailed
results
Conclusions

嗇 R.J. Steinhagen.
Lhc beam-beam compensator - a first proposal. 2011.

固 F. Zimmermann.
Scaling of diffusive aperture with wire current. 2003.

Particle distribution for footprint analysis

Footprint analysis tests are made modifying an initial gaussian distribution in x and y to obtain more particles with an initial radius between 4 and 6.5σ

Tune moved

Wire

Zimmermann

Longitudinal
pos
Transverse
pos and
current
Performed Tests

Stability
Tune moved
Square wire
Crossing angle 2 / 3

Tests
summary
Detailed
results
Conclusions

In IP 1

$$
\begin{align*}
& \Delta Q_{x}=-\frac{r_{p} I_{w} I_{w} \beta_{x}}{2 \pi \gamma q c d^{2}} \\
& \Delta Q_{y}=\frac{r_{p} I_{w} I_{w} \beta_{y}}{2 \pi \gamma q c d^{2}} \tag{1}\\
& r_{p}=\text { classical proton radius } \rightarrow 1.510^{-18} \mathrm{~m} \tag{2}\\
& \gamma=\text { relativistic } \gamma \rightarrow 7460.52 \\
& I_{w}=\text { wire current } \\
& I_{w}=\text { wire length } \rightarrow 1 \mathrm{~m} \\
& \beta_{u}=\beta \text { at the wire position }(\mathrm{u}=\mathrm{x}, \mathrm{y}) \\
& \mathrm{d}=\text { wire y-distance }
\end{align*}
$$

Normalized coordinates

Wire
Compensation
T. Rijoff, F. Zimmermann

Longitudinal
pos
Transverse
pos and
current
Performed
Tests
Stability
Tune moved
Square wire
Crossing
angle $2 / 3$
Tests
summary
Detailed
results
Conclusions

$$
\begin{align*}
& x_{n}=\frac{x}{\sigma_{x}} \\
& x_{n}^{\prime}=x^{\prime} \sqrt{\frac{\beta_{x}}{\epsilon_{x}}}+x \frac{\alpha_{x}}{\sigma_{x}} \tag{3}\\
& y_{n}=\frac{y}{\sigma_{y}} \\
& y_{n}^{\prime}=y^{\prime} \sqrt{\frac{\beta_{y}}{\epsilon_{y}}}+y \frac{\alpha_{y}}{\sigma_{y}}
\end{align*}
$$

