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REMINDER ON ALEXEYB’S RECENT RESULTS (1/2)

AlexeyB mentioned that without making the rigid-bunch
approximation and using the Van Kampen modes, he found a huge
(order of magnitude!) disagreement with previous works (following
Sacherer’s approach, i.e. rigid-bunch approximation)

AlexeyB considered 3 distributions and the case of a constant
inductive impedance above transition:

HP (Hofmann & Pedersen) distribution
Smooth (Sacherer's) distribution

The particular one of Tevatron with 7 coalesced bunches
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REMINDER ON ALEXEYB’S RECENT RESULTS (2/2)

AlexeyB’s new findings are the following:

For HP: a threshold ~ 3 times smaller than with the previous
(Sacherer et al.) formalism

For the smooth Sacherer's distribution: a threshold ~ 1 order of
magnitude below (in the usual formalism it is only a factor ~ 2-3
below, see next slides)

For the particular case of the Tevatron (using the "exact"” phase
space distribution): a threshold ~ 1 order of magnitude below the
smooth's one

Based on this analysis, AlexeyB's recommendation to fight this
instability is to smoothen the core of the distribution as it is very
effective (same qualitative result as with usual formalism, see
next slides)
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REMINDER ON SACHERER’S APPROACH (1/10)

See in particular “Methods for Computing Bunched-Beam
Instabilities”, CERN SI-BR/72-5, 1972

22545/files/CM-P00063598.pdf)
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For the transverse case, the dispersion relation is
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The Fourier transform of the kernel K(z) is related to either the longi-

tudinal or transverse coupling impedance.
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The more careful derivations of Landau ) (initial-value problem)
or of Van Kampen and Case”) (normal-mode approach) give the usual pre-

scription for treating the singularities in Eqs. (19) and (20).

The self-force F) couples the various unperturbed modes

inf @)

g1 = R(x) e

Discussion The solution of the partial differential-integral
Eq. (17) is relatively simple because (i) the variables can be separated,
and (ii) the resulting integral equation reduces to an algebraic equation.
In the bunched-beam case the variables also separate, but the integral

equation analogous to (18) does not, in general, reduce to algebraic form.

4. BUNCHED BEAMS

4.1 Characteristics of solution

For linear external forces (no frequency spreads) and no self-forces,
the orbits are circles in the z-(z/Q) plane, and any initial distribution
just rotates about the origin in this plane. Self-forces perturb the
motion, but because they are usually weak in comparison with the external
force, it is worth while to examine this seemingly trivial case in some

detail.

The Vlasov equation reduces to
3 _ g3 .
Q30

which has the normal-mode type solutions

(21)
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Because there are two degrees of freedom, there is a twofold infinity of

solutions, as indicated by the indices m and n. Any distribution with

circular symmetry but displaced from the origin (the rigid-dipole mog
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Rigid-bunch
approximation

together. However, the modes with different n cscillate with different

frequencies, and as long as the self-force is srall, we may ignore this
coupling. This amounts to inserting Eq. (22) into Eq. (9) and keeping
only the self-force term with the same harmonic n. We find an integral

equation for R(r),

(0= nQ)R(x) + ‘%" f 6 (", RGN £f dr! = 0 (23)
o

where
2m

. i cal_
Gn(r’,r) = 2—‘“ [[ K(r! cos 8' - r cos 6) e in(67-6)
°

sin 6 d6 48’ .

Discusston This separation of angular and radial variables is valid
as long as the frequency shifts produced by the self-force are small in
comparison with the frequency separation Qz betwzen modes with different
n. We end up with an integral equation analogous to the coasting-beam
i onstant,

8 excep h he intep no long

4.3 Synthetic kernelu)

A common way to proceed is to simplify the self-force so that the
integral in (23) is a constant. For example, this is accomplished if the
self-force depends only on the location of the bunch centre-of-mass, and

not on the details of the distribution,

Fi = -2Q4Q32

z g(z,2) dz ¢z .

Then
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and when this is inserted into (23) we obtain the dispersion relation

3

fd—dg;u—r’ dr
1=-mQ4Q [ e
w = Q,(r)

(25)
0
where an amplitude dependence of Qz is included. In the absence of
Landau damping, Qz = constant and we find
w=0Q, -4, (26)

which can serve to define AQ.

Discusston Physically, we have replaced the actual interaction that
generates a twofold infinity of modes and eigenfrequencies by a simplified
interaction that excites only the rigid-dipole mode, as indicated in
Fig. 5.

breathing mode, or only one of the higher multipole modes.

We could also choose an interaction that excites only the

This approach
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Fig. 5
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instabilities, and by many others. It seems to be the only practical

method of including the effect of Landau damping in bunched beams. Dis-

persion relation (25) 1s evaluated in Ref. 4 for several d1SCribucIOnS,
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REMINDER ON SACHERER’S APPROACH (2/10)

See for instance:
http://emetral.web.cern.ch/emetral/LongCohModes 26 02 03.ppt
http://cdsweb.cern.ch/record/704810/files/ab-2004-002.pdf

Sacherer formula

} dgo(r)dr

Dispersion integral
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REMINDER ON SACHERER’S APPROACH (3/10)
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FIGURE 2. Stabiliry diagrams for (a) a parabolic, (b) a Gaussian , and (c) the smooth distribution
function g, (7 )e= (1-7°)* used by Sacherer [3].
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FIGURE 3. Exact and approximate (see Eq. (13)) full spreads between centre and edge of the bunch.

Several points of the stability diagram of Fig. 2(c) can be obtamed analytically. The
coherent synchrotron frequency shift is given by Ae!_ /S=m*/(Iml+2) when @ =ma, ,
by Al /S=-Iml/(imi+2) when wo=m(e,-S), and by Re(Aa_/S)=0 when
@=m@, -Smi(m+l)) .

The synchrotron amplitude distribution and line density of the three distribution
functions are represented in Fig. 4.
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FIGURE 4. (a) Synchrotron amplitude distmbution and (b) line density for a Parabolic, a Gaussian,
and the smooth dismribution used by Sacherer [3].

Here, the following definitions have been wused: r=ri(r,/2), z=r/i(r,/2),
P H(rle,) =i A(r):J g, (DA /o,), [A@dr=1.

As can be seen in Eq. (2), the important function for the Landau damping
mechanism is

w A0 (7)
i : (14)

2 dg, (7).
:|.r dt dt 6/27




REMINDER ON SACHERER’S APPROACH (4/10)

Reminder

Incoherent
synchrotron frequencyl,
shift W, =w ,+ Ao,




REMINDER ON SACHERER’S APPROACH (5/10)

Aa)cl,11 =U-jV Motions 23 V' > () == |nstability
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16(U2+7?) 16(U?+7?)

Sacherer criterion
recovered analytically
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REMINDER ON SACHERER’S APPROACH (6/10)

Incoherent synchrotron
frequency spread

Elias Métral, 38th ICE meeting, 14/09/2011



REMINDER ON SACHERER’S APPROACH (7/10)

‘? k." 4‘ o slmn,q
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No stability threshold due to the
sharp edge of the parabolic distribution
=> See stability boundary diagram
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REMINDER ON SACHERER’S APPROACH (8/10)

Some quantitative results (for the rigid-bunch approximation) for an
inductive impedance above transition (i.e. case of AlexeyB):

HP => Aw!" =078

Gaussian => Aa)lltlh 05S
C

Smooth Sacherer => [\ wiltlh LI AMY => Slightly more than a

factor 2 lower than HP => | agree with AlexeyB

Approx. Sacherer => A a)i_ltlh ~=~0.25 SERNTIRUE

criterion | usually use
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REMINDER ON SACHERER’S APPROACH (9/10)

=> HP distribution is the best (as found by AlexeyB) because we
discuss the particles in the centre of the distribution (as we consider
the case of an inductive impedance above transition or space charge
below) => It is indeed very efficient to flatten the distribution in the
centre to increase Landau damping

However, for the case of an inductive impedance below transition or

space charge above, it would be the opposite as in this case, due to
the sharp edge of the HP distribution, no Landau damping is
provided and smooth (long) tails are preferred in this case

Elias Métral, 38th ICE meeting, 14/09/2011




REMINDER ON SACHERER’S APPROACH (10/10)

Consider the case of an inductive impedance above transition (or
space charge below), the HP distribution and the dipole mode only:

Computing the incoherent tune shift at small amplitudes at the
intensity threshold gives (to use the same parameter as AlexeyB)

h COS .

4
3ef0] l
n
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COMPARISON WITH ALEXEYB’S RESULTS (1/3)

Numerical application for the LHC at top energy:

Z/n=01jQ All consistent with what
f, = 11245 Hz AlexeyB reported

h = 35640 AlexeyB found ~ 5.7E11 p/b,

i.e. factor ~ 3 less
Ve =16 MV

Total (4 o) bunch length =1 ns => B = 1.1245E-5

fo =23 Hz, w,, = 144.5 rad/s AlexeyB found ~ 2.2%,
S = 14.3 rad/s i.e. also a factor ~ 3 less

/

N =1910" p/b

=> Sacherer’s approximation (which | usually use)

N!"=6.710" p/b
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COMPARISON WITH ALEXEYB’S RESULTS (2/3)

Numerical application for the Tevatron at both injection and top
energy: Measured unstable bunches
Z/n=15jQ at ~ 2E11 p/b at injection
f, =47619 Hz (53 MHz RF frequency )
h=1113
Vge =1 MV (both at injection - 150 GeV - and top - 980 GeV -)

Total (4 o) bunch length = 15/ 9 ns at injection / top energy

fso =90 Hz, w,, = 565.5 rad/s All consistent with what
S =14.3 rad/s AlexeyB reported

=> HP:

Injection energy

N!"=~5810" p/b

.
op energy N"=~4510" p/b
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COMPARISON WITH ALEXEY’S RESULTS (3/3)

Comparison below and above transition (for inductive impedance):
HP:
Me (and Besnier etc.): Always unstable

AlexeyB: Same result (at least very very small as it is a
numerical result and depends on grid point etc.)

=> Similar result between the 2 approaches
Smooth:
Me (and Sacherer etc.): Same AT and BT
AlexeyB: Almost the same (~ 30% higher BT)

=> Similar result between
| would say then that the

important point is the rigid-
approximation and maybe not so
much the potential well (to
explain the difference with
“usual” theories)...

the 2 approaches

Elias Métral, 38th ICE meeting, 14/09/2011




COMPARISON WITH LHC MEASUREMENTS BY ELENAS

See ICE meeting (01/09/10) + IPAC11 paper

=> Seems close to “usual” theories, leading to a Z, / n close to the

theoretical value (~ 0.1 j Q, including the resistive part of the
collimators)

=> To be followed up in more detail (exact shape of the distribution
etc. as it is very sensitive)
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (1/8)

¢ Case of the SPS studied in the past

N ~1.35x10" p/bja N;' =1.35x10"" p/bfil
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (2/8)

Im[zlln]deduced ~8.4Q
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HEADTAIL)
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (3/8)

2/ p| 2 1p| Exactly the same as

3
X l—Sgn(r])xZ KSB in our case

2"1p)

> 2
_ (E/e)B*|n| X(Ap)
FWHH,0

(M) =0.7x10" p/b

theory

1

p0

Do

i.e. theoretical
prediction is ~ 2 times
lower compared to
HEADTAIL
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (4/8)

‘Zzsc(P)/P’

A

stable unstable

unstable

—» |27 (p)/ p|

Figure 14: Stability diagram for the LMC instability
below and above transition respectively for a proton
bunch. The Keil-Schnell circle is represented by the
dashed curve.
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (5/8)

Flag_for_bunch_particles_{1-=protons_2-zpositrons_384-=ions):
Average_electron_cloud_density_along_the_ring_{1/m*3):

Number _of _particles_per_bunch:
Horizontal_beta_function_at_the_kick_sections_[m]:
Vertical_beta_function_at_the_kick_sections_[m]:
Bunch_length_{rms_value)_[m]:
Normalized_horizontal_emittance_(rms_value)_[um]:
Mormalized_vertical_emittance_{rms_value)_[um]:
Longitudinal_momentum_spread:

Synchrotron_tune:

Momentum_compaction_factor:
Ring_circumference_length_[m]: —
Relativistic_gamma: Above Transition
Number _of _kick_sections:
Number _of _laps:
Multiplication_factor_for_pipe_axes
Multiplication_factor_for_pipe_axes
Longitud_extension_of _the_bunch_{+/-N¥sigma_z)
Horizontal_tune:

Vertical_tune:

Horizontal_chromaticity_[0Q'x]:

Vertical_chromaticity_[Q'y]:

Flag_for_synchrotron_motion:

Scale_factor_for_electrons_size:

Switch_for_wake_fields:
Switch_for_pipe_geometry_{B->round_1->f lat):

Number _of _turns_for_the_wake:

Res_frequency_of _broad_band_resonator_[GHz]:
Transverse_quality_factor:
Transverse_shunt_impedance_[MOhm/m] :

Res_frequency_of _longitudinal_resonator_[MHz]:
Longitudinal_quality_factor:
Longitudinal_shunt_impedance_[MOhm] :
Flag_for_the_tune_spread_{@->ho_1->space_charge_2->random):
Flag_for_the_e-field_calc_method_{B->no_1->soft_Gauss_2-=PIC):
Magnetic_field_{B-=no_1-=dipole_2->solenoid_3->combined):
Switch_for_initial_kick:

x-kick_amplitude_at_t=6_[sigmas]:
y-kick_amplitude_at_t=6_[sigmas]:
Flag_for_the_proton_space_charge:
Flag_for_the_sc-rotation(@-=local_centroid_i-zbunch_centroid):
Solenoid_field_[T]:
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Flag_for_the_sc-rotation{B-=local_centroid_1-zbunch_centroid):

Solenoid_field_[T]:
Switch_for_amplitude_detuning:
Coherent_centroid_motion_{@-zof f_1-»o0n):

El_distrib_{1-=Rect_2-=Ellip_3->[1_strp]_4-=[2_strp]_5->Parab):

Linear_coupling_switch{l-zon_B-off ):
Linear_coupling_coefficient_[1/m]:
Average_dispersion_function_in_the_ring_[m]:
Position_of _the_stripes_[units_of_sigmax]:
Width_of _the_stripes_[units_of _sigmax]:
Kick_in_the_longitudinal_direction_[m]:
Number _of _turns_between_two_bunch_shape_acquisitions:
Main_rf_voltage_[¥]:
Main_rf_harmonic_number :
Initial_2nd_rf_voltage_[¥]:
Final_2nd_rf_cavity_voltage_[V]:
Harmonic_number _of _Znd_rf:
Relative_phase_between_cavities:
Start_turn_for_2nd_rf_ramp:
End_turn_for_2nd_rf_ramp:
Sextupolar_kick_switch{1-zon_B-off ):
Sextupole_strength_[1/m*2]:
Dispersion_at_the_sextupoles_[m]:
Switch_for_losses_{@-=no_losses_1->losses):
Second_order_horizontal_chromaticity_{Qx''):
Second_order_vertical_chromaticity_{Qy''):

Switch_for_boundary_conditions(@-=open_space_1-zrect_box):

Switch_for_random_phase_advance{B-=no_l-=yes):
Switch_for_e-cooler{B-=no_e-cooler_1->tuned_e-cooler):
Length_of _the_e-cooler_[m]:
Switch_for_the_damper:

Damper_x_gain:

Damper_x_noise_amplitude:

Damper_y_gain:

Damper_y_noise_amplitude:

Conductivity_of _the_resistive_wall_[1/0hm/m]:
Length_of _the_resistive_wall_[m]:
Switch_for_beta:

Switch_for_wake_table:
Linear_Rate_of _Change_of _Momentum_ [GeV/c/sec]:
Second_Order_Momentum_Compaction_Factor:
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.5
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a.6e+6
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306000
40600

a
-8.254564
2.24

a

a
a
a
1
1
a
a
a
3
a

WO, O®

a.1
1e-5

1le-5
1.e6

=

o000 @

22/27



SIMPLE LMCI MODEL COMPARED TO HEADTAIL (6/8)
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (7/8)

1 1
P "T01_SPSLMCI_bunchds,dat" index 3 u 1:2
Above TranSition I" "T010_SPSLMCI_bunchds,dat" index 3 u 1:2
/ \ "1050_SPSLMCI_bunchds,dat" index 3 u 1:2
3 Basle \ "10100_SPSLMCI _bunchds.dat" index 3 u 132
t}l ,/ijn 11 /sz. 10110_SPSLMCI _bunchds,dat" index 3 u 1:2
N b ~135x%x10 p/b "10120_SPSLHCT_bunchds. dat” index 3 u 132
i % "10130_SPSLMCI _bunchds,dat" index 3 u 1:2
"10140_SPSLMCI _bunchds,dat" index 3 u 1:2

Instability for 140E9 p/b
(and stability for 130E9 p/b)

1,5e+06

500000
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SIMPLE LMCI MODEL COMPARED TO HEADTAIL (8/8)

"101_SPSLMCI BBBT bunchds,dat" 1ndex 3

Be|0w Tran s|t|on o *1010_SPSLMCI_BBET bunchds.dat” index 3
i ) "1050_SPSLMCI_BBBT _bunchds.dat" index 3

*10100_SPSLHCI_BEBT_bunchds.dat” index 3

th ,BT 11 ,: "10150_SPSLMCI_BBBT_bunchds,dat” index 3
N b = 205 X 10 p/ b }‘ "10160_SPSLMCI_BBBT _bunchds.dat" index 3

4,5e+06

th AT [ TR "10170_SPSLMCI_BBBT _bunchds.dat" index 3
= 15 X N ’ ( [\ "10180_SPSLMCI_BBET bunchds,dat" index 3

N b . iy "10190_SPSLMCI_BBBT _bunchds.dat" index 3
"10200_SPSLMCI_BBBT _bunchds,dat" index 3
"10210_SPSLMCI_BEET _bunchds,dat" index 3

~ 1.7 was anticipated
with a simple analytical
model

Instability for 210E9 p/b
(and stability for 200E9 p/b)

HOWEVER, tails are created
(responsible for the long. emittance
increase)!!! Are they due to the
longitudinal mismatch increasing
with intensity???

500000

In fact, looking at the evolution of the longitudinal distribution,
seems as if the core of the bunch is shortening but not the tails

Elias Métral, 38th ICE meeting, 14/09/2011




COMPARISON WITH ALEXEYB’S RESULTS

Results from AlexeyB:

Z, | n (from the slope) = 5.6 j Q (to be compared to the 10 j Q put
in HEADTAIL and the 8.4 j Q found with simple formula)

th 10
LLD threshold (above transition): N, =1.110" p/b

i.e. ~ 10 times lower
than LMCI

LLD threshold (below transition): ~ 8 times higher, i.e. close to

LMCI => In this case the mode-coupling analysis should be
included in AlexeyB’s calculation as it is not negligible anymore!

Elias Métral, 38th ICE meeting, 14/09/2011




CONCLUSIONS AND OUTLOOK

Very interesting new results by AlexeyB, which successfully
explained the observations of dancing bunches in the Tevatron

As mentionned by AlexeyB, they qualitatively agree with previous
analyses etc. but the numerical factor can be very large!

Let’'s try and understand what happens in the LHC and why the

intensity threshold for LLD seems close to “usual” theories, whereas
it should be much smaller according to AlexeyB (for the smooth

approximation we used) => Detail analysis of the (centre of the)
distribution as it is very very sensitive

Concerning the LMCI studies above and below transition, started in
the past for the SPS with a broad-band impedance:

Check with HEADTAIL the effect of space charge in addition to
the broad-band impedance => Hugo Day

Detailed comparison with AlexeyB

Elias Métral, 38th ICE meeting, 14/09/2011




