

Working point optimization and space-charge studies

E. Benedetto

...with input, material (and beam) from many colleagues in ABP, OP and RF

LIU-PS Meeting, 17-5-2011

Motivations

- LIU-PS: Deliver high beam intensities required by HL-LHC & preserve transverse emittance
- Space-Charge (SC) at inj. (1.4 GeV) induces blow-up:
 - If Laselett |∆Q| >0.3
 - If double-batch injection (long flat bottom)
- Mitigation:
 - Go to 2 GeV & further optimize Working Point (WP)
- Machine Development (MDs) studies:
 - WP scan \rightarrow identify destructive resonances
 - Emittance growth measurements \rightarrow get max. allowed ΔQ
- Other high-intensity beams will profit: n-Tof, CNGS and Fixed Target, Beta-Beams

Emittance growth measurements

- Compare with *R.Cappi et al., PAC'93*: different growth rate, why?
- Repeat @ 2 GeV and once optimized WP

WP scan (and optimization)

• Determine best WP to accommodate the largest SC neck-tie

- Particles cross betatron resonance lines and
 - either lost
 - either emittance blow-up
- If |∆Q_{Laselett}| > 0.2 the SC neck-tie extends down to the integer

WP scan (and optimization)

- Identify dangerous resonance lines in tune diagram
- Loss measurements:
 - Low intensity beam (not SC-dominated) \rightarrow 130 x 10^{10}
 - Large emittance (to fill the chamber & provoke immediate losses)
 - Long flat bottom @ 1.4 GeV
 - Tune program:
 - Scan between (0.1 0.4)
 - Vertical tune constant
 - Sweep of the horizontal tune

 Slope in the intensity signal indicates importance of the crossed resonance line

WP scan - bunched

WP scan - debunched

E. Benedetto, LIU-PS Meeting, 17-5-2011

WP scan

Conclusions

- WP scan @ 1.4 GeV done (by Alex) to identify resonances
- Method (horizontal tune sweep) is validated
- Better to use debunched beam (no Q' effect)

Next steps:

- Repeat WP scans @ 2 GeV
- Correct Q' with PFW
- Identify optimum WP @ 2 GeV, with large SC neck-tie
- Emittance blow-up measurements
 - Extract growth time
 - Check transverse & longitudinal profiles
 - (If resonance crossing we expect bunch shortening)