Synchro-Betatron Motion in Circular Accelerators

Kevin Li

May 11, 2011

Outline of Part I

(1) Motivation

- Collective effects in the longitudinal plane
- Numerical and computational tools in accelerator physics
(2) Basic Model
- Basic physics
- Specialisation to classical electromagnetic theory
(3) Basic Dynamics
- The symplectic structure

Outline of Part II

4 The Transverse Hamiltonian

- Canonical transformations
- Coordinate and rescaling transformation
- Transverse dynamics

Outline of Part III

(5) The Synchro-Betatron Hamiltonian

- Series of canonical transformations
- RF fields
- The full Synchro-Betatron Hamiltonian

Part II

The Transverse Hamiltonian

Summary of Part I

Summary

- We created our universe by declaring two manifolds and connecting them with a mapa ${ }^{\text {a }}$
- We introduced physics by postulating the principle of least action
- We defined the Lagrangian via the action
- We defined the Hamiltonain as the Legendre transform of the Lagrangian
- We then applied the principle of least action and obtained the Hamilton equations of motion which revealed the full symplectic structure of a dynamical system

[^0]
Outline

4 The Transverse Hamiltonian

- Canonical transformations
- Coordinate and rescaling transformation
- Transverse dynamics

Canonical transformations

We start from the general electromagnetic Hamiltonian

$$
H(q, P, t)=\sqrt{(\vec{P}-q \vec{A})^{2} c^{2}+m^{2} c^{4}}+q V
$$

This Hamiltonian is still very general and not particularly useful in practice:

- What is the coordinate system?
- What are \vec{A} and V ?

Canonical transformations

We start from the general electromagnetic Hamiltonian

$$
H(q, P, t)=\sqrt{(\vec{P}-q \vec{A})^{2} c^{2}+m^{2} c^{4}}+q V
$$

This Hamiltonian is still very general and not particularly useful in practice:

- What is the coordinate system?
- What are \vec{A} and V ?

Canonical transformations

On the next couple of slides we will derive the practical Hamiltonian up to third order; it will evolve quite naturally, we will not need to do a lot of thinking

$$
\begin{aligned}
& H\left(\hat{x}, \hat{p}_{x}, \hat{y}, \hat{p}_{y}, \sigma, \delta ; s\right)= \\
& -\frac{1}{2} \eta \delta^{2}+\frac{1}{3} \nu \delta^{3} \\
& -\frac{q V_{0}}{2 \pi R P_{0} \omega_{\mathrm{rf}}}\left(\cos \left(\frac{h \sigma}{R}\right)-\cos \left(\varphi_{0}\right)\right)-\frac{q V_{0} \sigma}{2 \pi R^{2} P_{0} \omega_{0}} \sin \left(\varphi_{0}\right) \\
& +\frac{1}{2} \hat{p}_{x}^{2}+\frac{1}{2} \hat{p}_{y}^{2}+\frac{1}{2}\left(K^{2}+g\right) \hat{x}^{2}-\frac{1}{2} g \hat{y}^{2} \\
& +\frac{1}{6} K g \hat{x}^{3}+\frac{1}{6} f \hat{x}^{3}-\frac{1}{2} K g \hat{x} \hat{y}^{2}-\frac{1}{2} f \hat{x} \hat{y}^{2}
\end{aligned}
$$

We will reach this Hamiltonian with a series of canonical transformations.

Why canonical transformations?

- The Hamilton equations of motion arised out of the principle of least action from the fact that the Hamiltonian is the Legendre transform of the Lagrangian
- The Hamiltonian is thus a function of two independent sets of variables: the generalized coordinates and the corresponding canonical momenta
- An arbitrary transformation of these two sets of variables in general will break the canonical conjugate relationship between them and will not render the Hamilton equations of motion forminvariant, i.e.
> will not preserve the symplectic structure
> will violate the principle of least action
> will lead to a description of dynamics which is non-physical

[^1]
Why canonical transformations?

- The Hamilton equations of motion arised out of the principle of least action from the fact that the Hamiltonian is the Legendre transform of the Lagrangian
- The Hamiltonian is thus a function of two independent sets of variables: the generalized coordinates and the corresponding canonical momenta
- An arbitrary transformation of these two sets of variables in general will break the canonical conjugate relationship between them and will not render the Hamilton equations of motion forminvariant, i.e.
\rightarrow will not preserve the symplectic structure
\rightarrow will violate the principle of least action
\rightarrow will lead to a description of dynamics which is non-physical

[^2]
Why canonical transformations?

- The Hamilton equations of motion arised out of the principle of least action from the fact that the Hamiltonian is the Legendre transform of the Lagrangian
- The Hamiltonian is thus a function of two independent sets of variables: the generalized coordinates and the corresponding canonical momenta
- An arbitrary transformation of these two sets of variables in general will break the canonical conjugate relationship between them and will not render the Hamilton equations of motion forminvariant, i.e.
\rightarrow will not preserve the symplectic structure
\rightarrow will violate the principle of least action
\rightarrow will lead to a description of dynamics which is non-physical
\rightarrow We require a simultaneous transformation of q and P, i.e. a transformation in phase space

Why canonical transformations?

- Transformation from old variables (q, p) to new variables (Q, P) :

$$
Q_{i}=Q_{i}(q, p, t), \quad P_{i}=P_{i}(q, p, t)
$$

- The new variables must be canonically conjugate:

$$
\dot{Q}_{i}=\frac{\partial K}{\partial P_{i}}, \quad \dot{P}_{i}=-\frac{\partial K}{\partial Q_{i}}
$$

- The Hamilton equations of motion must hold identically for both cases:

$$
\begin{aligned}
& \delta \int_{0}^{1} p_{i} d q_{i}-H(q, p, t) d t=0 \\
& \delta \int_{0}^{1} P_{i} d Q_{i}-K(Q, P, t) d t=0 \\
\Leftrightarrow & p_{i} d q_{i}-P_{i} d Q_{i}-(H(q, p, t)-K(Q, P, t)) d t=\frac{d F}{d t},\left.\quad \delta F\right|_{0} ^{1}=0
\end{aligned}
$$

The generating function

F is called the generating function. It is a function of phase space coordinates and as such it's variation vanishes at the end points.

Assume $F=F_{1}(q, Q, t)$, then

$$
\begin{aligned}
\frac{d F_{1}}{d t} & =\frac{\partial F_{1}}{\partial q_{i}} d q_{i}+\frac{\partial F_{1}}{\partial Q_{i}} d Q_{i}+\frac{\partial F_{1}}{\partial t} d t \\
& =p_{i} d q_{i}-P_{i} d Q_{i}-(H(q, p, t)-K(Q, P, t)) d t
\end{aligned}
$$

and hence

$$
p_{i}=\frac{\partial F_{1}}{\partial q_{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q_{i}}, \quad K(Q, P, t)=H+\frac{\partial F_{1}}{\partial t}
$$

Other generating functions

(1) $F_{1}(q, Q, t) \rightarrow q=q(q, Q, t), \quad p=p(q, Q, t)$

$$
p_{i}=\frac{\partial F_{1}}{\partial q^{i}}, \quad P_{i}=-\frac{\partial F_{1}}{\partial Q^{i}}, \quad K=H+\frac{\partial F_{1}}{\partial t}
$$

(2) $F_{2}(q, P, t) \rightarrow q=q(q, P, t), \quad p=p(q, P, t)$

$$
p_{i}=\frac{d F_{2}}{d q^{i}}, \quad Q^{i}=\frac{d F_{2}}{d P_{i}}, \quad K=H+\frac{\partial F_{2}}{\partial t}
$$

(3) $F_{3}(Q, p, t) \rightarrow q=q(Q, p, t), \quad p=p(Q, p, t)$

$$
q^{i}=-\frac{\partial F_{3}}{\partial p_{i}}, \quad P_{i}=-\frac{\partial F_{3}}{\partial Q^{i}}, \quad K=H+\frac{\partial F_{3}}{\partial t}
$$

(9) $F_{4}(p, P, t) \rightarrow q=q(p, P, t), \quad p=p(p, P, t)$

$$
q^{i}=-\frac{\partial F_{4}}{\partial p_{i}}, \quad Q_{i}=\frac{\partial F_{4}}{\partial P^{i}}, \quad K=H+\frac{\partial F_{4}}{\partial t}
$$

Practical usage of a generating function

- Suppose we have a Hamiltonian $H=H(q, p)$
- We have found some nice coordinates $Q(q, p)$ to which we would like to transform
- We need to find the corresponding canonically conjugate variables P and the new Hamiltonian $K(Q, P)$

Practical usage of a generating function

- Suppose we have a Hamiltonian $H=H(q, p)$
- We have found some nice coordinates $Q(q, p)$ to which we would like to transform
- We need to find the corresponding canonically conjugate variables P and the new Hamiltonian $K(Q, P)$

The transformation can be generated by a function $F_{3}(Q, p)$:

Practical usage of a generating function

- Suppose we have a Hamiltonian $H=H(q, p)$
- We have found some nice coordinates $Q(q, p)$ to which we would like to transform
- We need to find the corresponding canonically conjugate variables P and the new Hamiltonian $K(Q, P)$

The transformation can be generated by a function $F_{3}(Q, p)$:
(1) Invert $Q(q, p) \rightarrow q(Q, p)$

Practical usage of a generating function

- Suppose we have a Hamiltonian $H=H(q, p)$
- We have found some nice coordinates $Q(q, p)$ to which we would like to transform
- We need to find the corresponding canonically conjugate variables P and the new Hamiltonian $K(Q, P)$

The transformation can be generated by a function $F_{3}(Q, p)$:
(1) Invert $Q(q, p) \rightarrow q(Q, p)$
(2) $q_{i}=-\frac{\partial F_{3}}{\partial p^{i}}, \quad P^{i}=-\frac{\partial F_{3}}{\partial Q_{i}}, \quad K=H+\frac{\partial F_{3}}{\partial t}$

Practical usage of a generating function

- Suppose we have a Hamiltonian $H=H(q, p)$
- We have found some nice coordinates $Q(q, p)$ to which we would like to transform
- We need to find the corresponding canonically conjugate variables P and the new Hamiltonian $K(Q, P)$

The transformation can be generated by a function $F_{3}(Q, p)$:
(1) Invert $Q(q, p) \rightarrow q(Q, p)$
(2) $q_{i}=-\frac{\partial F_{3}}{\partial p^{i}}, \quad P^{i}=-\frac{\partial F_{3}}{\partial Q_{i}}, \quad K=H+\frac{\partial F_{3}}{\partial t}$
(3) $F_{3}(Q, p)=-\int q(Q, p) d p, \quad H(q, p) \rightarrow K(Q, P)$

Spatial translation and Frenet-Serret coordinates

General Hamiltonian

$$
\begin{equation*}
H_{0}=\sqrt{(\vec{P}-q \vec{A})^{2} c^{2}+m^{2} c^{4}}+q V \tag{2}
\end{equation*}
$$

Coordinate transformation

- Parameter transformation: $t \rightarrow s, H \rightarrow-P_{s}=H$
- Coordinate transformation: Frenet-Serret

$$
\begin{align*}
& H\left(x, P_{x}, y, P_{y}, t, H_{0} ; s\right)=-\left(1+\frac{x}{R}\right) \\
& \times \sqrt{\frac{\left(H_{0}-q V\right)^{2}}{c^{2}}-\left(P_{x}-q A_{x}\right)^{2}-\left(P_{y}-q A_{y}\right)^{2}-m^{2} c^{2}} \\
& -q\left(1+\frac{x}{R}\right) A_{s} \tag{3}
\end{align*}
$$

Scaling transformation (1)

From now on we set

$$
(x, y) \rightarrow u, \quad\left(P_{x}, P_{y}\right) \rightarrow P_{u}, \quad\left(A_{x}, A_{y}\right) \rightarrow A_{u}
$$

With

$$
P^{2}=\frac{\left(H_{0}-q V\right)^{2}}{c^{2}}-m^{2} c^{2}
$$

we can write

Hamiltonian

$$
\begin{equation*}
H\left(u, P_{u}, t, H_{0} ; s\right)=-\left(1+\frac{x}{R}\right) \sqrt{P^{2}-\left(P_{u}-q A_{u}\right)^{2}}-q\left(1+\frac{x}{R}\right) A_{s} \tag{4}
\end{equation*}
$$

Scaling transformation (2)

- We want to rescale $\tilde{H} \rightarrow \frac{H}{P_{0}}$ with $P_{0}=\frac{E_{0} \beta_{0}}{c}$
- For this we need to rescale the canonically conjugate variables accordingly so that $\tilde{u} \tilde{P}_{u}=\frac{u P_{u}}{P_{0}}, s_{0} H_{s}=\frac{t H_{0}}{P_{0}}$

Scaling transformation

- $\tilde{H} \rightarrow \frac{H}{P_{0}} \Rightarrow \tilde{u} \rightarrow u, \tilde{P}_{u} \rightarrow \frac{P_{u}}{P_{0}}, s_{0} \rightarrow \beta_{0} c t, H_{s} \rightarrow \frac{H_{0}}{E_{0} \beta_{0}^{2}}$
- We immediately relabel all " \sim "-variables and obtain:

$$
\begin{align*}
H\left(u, P_{u}, s_{0}, H_{s} ; s\right) & =-\left(1+\frac{x}{R}\right) \\
& \times \sqrt{\frac{P^{2}}{P_{0}^{2}}-\left(P_{u}-\frac{q}{P_{0}} A_{u}\right)^{2}}-\frac{q}{P_{0}}\left(1+\frac{x}{R}\right) A_{s} \tag{5}
\end{align*}
$$

Magnetic rigidity

With the magnetic rigidity of the reference orbit $\frac{P_{0}}{q}=B_{0} R$ and with $\frac{1}{B_{0} R} A_{u} \ll P_{u}$ we can finally write ${ }^{2}$

Hamiltonian

$$
\begin{equation*}
H\left(u, P_{u}, s_{0}, H_{s} ; s\right)=-\left(1+\frac{x}{R}\right) \sqrt{\frac{P^{2}}{P_{0}^{2}}-P_{u}^{2}}-\frac{1}{B_{0} R}\left(1+\frac{x}{R}\right) A_{s} \tag{6}
\end{equation*}
$$

$$
{ }^{2} R=1 / K: \text { ring radius }
$$

Transverse expansion

With $P \approx P_{0}$ and $P_{u} \ll 1$ we can expand the square root to obtain

$$
H=-\left(1+\frac{x}{R}\right) \frac{P}{P_{0}}+\frac{1}{2}\left(1+\frac{x}{R}\right) \frac{P_{0}}{P} P_{u}^{2}-\frac{1}{B_{0} R}\left(1+\frac{x}{R}\right) A_{s} \text { (7) }
$$

We can see how the synchro-betatron coupling vanishes for
$P=P_{0}$ where we obtain

$$
\begin{equation*}
H=-\left(1+\frac{x}{R}\right)+\frac{1}{2}\left(1+\frac{x}{R}\right) P_{u}^{2}-\frac{1}{B_{0} R}\left(1+\frac{x}{R}\right) A_{s} \tag{8}
\end{equation*}
$$

Vector potential expansion

The vector potential expansion can be obtained directly from Laplace's equation using the standard method of coefficient recursion after a polynomial Ansatz. For a normal magnet, neglecting fringe fields, the expansion becomes

$$
\begin{aligned}
A_{s} & =-B_{0}\left(x-\frac{1}{2 R} x^{2}+\frac{1}{2 R^{2}} x^{3}-\frac{1}{2 R^{3}} x^{4}\right) \\
& -B_{1}\left(\frac{x^{2}-y^{2}}{2}-\frac{1}{6 R} x^{3}+\frac{4 x^{4}-y^{4}}{24 R^{2}}\right) \\
& -B_{2}\left(\frac{x^{3}-3 x y^{2}}{6}-\frac{x^{4}-y^{4}}{24 R}\right) \\
& -B_{3}\left(\frac{x^{4}-6 x^{2} y^{2}+y^{4}}{24}\right)
\end{aligned}
$$

Transverse Hamiltonian

Inserting the vector potential expansion we obtain the transverse Hamiltonian up to third order in x, y

Transverse Hamiltonian

$$
\begin{aligned}
H\left(x, P_{x}, y, P_{y}\right) & =\frac{1}{2} P_{u}^{2}+\frac{1}{2}\left(K^{2}+g\right) x^{2}-\frac{1}{2} g y^{2} \\
& +\frac{1}{6} K g x^{3}+\frac{1}{6} f x^{3}-\frac{1}{2} K g x y^{2}-\frac{1}{2} f x y^{2}
\end{aligned}
$$

$K=\frac{1}{R}, g=\frac{B_{1}}{B_{0} R}, f=\frac{B_{2}}{B_{0} R}$

Transverse Hamiltonian

Inserting the vector potential expansion we obtain the transverse Hamiltonian up to third order in x, y

[^0]: ${ }^{a}$ This allowed us to define the action

[^1]: \rightarrow We require a simultaneous transformation of q and P, i.e. a

[^2]: \rightarrow We require a simultaneous transformation of q and P, i.e. a

