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Outline of Part I

1 Motivation
Collective effects in the longitudinal plane
Numerical and computational tools in accelerator physics

2 Basic Model
Basic physics
Specialisation to classical electromagnetic theory

3 Basic Dynamics
The symplectic structure

Kevin Li Synchro-Betatron Motion 2/ 71



Outlines
Part I: Motivation and Model Introduction
Part II: The Transverse Hamiltonian
Part III: The Synchro-Betatron Hamiltonian

Outline of Part II

4 The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Kevin Li Synchro-Betatron Motion 3/ 71



Outlines
Part I: Motivation and Model Introduction
Part II: The Transverse Hamiltonian
Part III: The Synchro-Betatron Hamiltonian

Outline of Part III

5 The Synchro-Betatron Hamiltonian
Series of canonical transformations
RF fields
The full Synchro-Betatron Hamiltonian
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The Transverse Hamiltonian

Part II

The Transverse Hamiltonian
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The Transverse Hamiltonian

Summary of Part I

Summary

We created our universe by declaring two manifolds and
connecting them with a mapa

We introduced physics by postulating the principle of least
action

We defined the Lagrangian via the action

We defined the Hamiltonain as the Legendre transform of the
Lagrangian

We then applied the principle of least action and obtained the
Hamilton equations of motion which revealed the full
symplectic structure of a dynamical system

aThis allowed us to define the action

Kevin Li Synchro-Betatron Motion 29/ 71



The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Canonical transformations

We start from the general electromagnetic Hamiltonian

H(q, P, t) =

√
(~P − q ~A)2c2 +m2c4 + qV

This Hamiltonian is still very general and not particularly useful in
practice:

What is the coordinate system?

What are ~A and V ?
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Canonical transformations

On the next couple of slides we will derive the practical Hamiltonian up to
third order; it will evolve quite naturally, we will not need to do a lot of
thinking

H(x̂, p̂x, ŷ, p̂y, σ, δ; s) =

− 1

2
ηδ2 +

1

3
νδ3

− qV0
2πRP0ωrf

(
cos

(
hσ

R

)
− cos(ϕ0)

)
− qV0σ

2πR2P0ω0
sin(ϕ0)

+
1

2
p̂2x +

1

2
p̂2y +

1

2

(
K2 + g

)
x̂2 − 1

2
gŷ2

+
1

6
Kgx̂3 +

1

6
fx̂3 − 1

2
Kgx̂ŷ2 − 1

2
fx̂ŷ2

We will reach this Hamiltonian with a series of canonical transformations.
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Why canonical transformations?

The Hamilton equations of motion arised out of the principle of least
action from the fact that the Hamiltonian is the Legendre transform
of the Lagrangian

The Hamiltonian is thus a function of two independent sets of
variables: the generalized coordinates and the corresponding
canonical momenta

An arbitrary transformation of these two sets of variables in general
will break the canonical conjugate relationship between them and
will not render the Hamilton equations of motion forminvariant, i.e.

→ will not preserve the symplectic structure
→ will violate the principle of least action
→ will lead to a description of dynamics which is non-physical

→We require a simultaneous transformation of q and P , i.e. a
transformation in phase space
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Why canonical transformations?

Transformation from old variables (q, p) to new variables (Q,P ):

Qi = Qi(q, p, t) , Pi = Pi(q, p, t)

The new variables must be canonically conjugate:

Q̇i =
∂K

∂Pi
, Ṗi = − ∂K

∂Qi

The Hamilton equations of motion must hold identically for both
cases:

δ

∫ 1

0

pi dqi −H(q, p, t) dt = 0

δ

∫ 1

0

Pi dQi −K(Q,P, t) dt = 0

⇔ pi dqi − Pi dQi − (H(q, p, t)−K(Q,P, t)) dt =
dF

dt
, δF |10 = 0
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

The generating function

F is called the generating function. It is a function of phase space
coordinates and as such it’s variation vanishes at the end points.

Assume F = F1(q,Q, t),
then

dF1

dt
=
∂F1

∂qi
dqi +

∂F1

∂Qi
dQi +

∂F1

∂t
dt

= pi dqi − Pi dQi − (H(q, p, t)−K(Q,P, t)) dt

and hence

pi =
∂F1

∂qi
, Pi = −∂F1

∂Qi
, K(Q,P, t) = H +

∂F1

∂t
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Other generating functions

1 F1(q,Q, t)→ q = q(q,Q, t) , p = p(q,Q, t)

pi =
∂F1

∂qi
, Pi = −∂F1

∂Qi
, K = H +

∂F1

∂t

2 F2(q, P, t)→ q = q(q, P, t) , p = p(q, P, t)

pi =
dF2

dqi
, Qi =

dF2

dPi
, K = H +

∂F2

∂t

3 F3(Q, p, t)→ q = q(Q, p, t) , p = p(Q, p, t)

qi = −∂F3

∂pi
, Pi = −∂F3

∂Qi
, K = H +

∂F3

∂t

4 F4(p, P, t)→ q = q(p, P, t) , p = p(p, P, t)

qi = −∂F4

∂pi
, Qi =

∂F4

∂P i
, K = H +

∂F4

∂t
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Practical usage of a generating function

Suppose we have a Hamiltonian H = H(q, p)

We have found some nice coordinates Q(q, p) to which we
would like to transform

We need to find the corresponding canonically conjugate
variables P and the new Hamiltonian K(Q,P )

The transformation can be generated by a function F3(Q, p):

1 Invert Q(q, p)→ q(Q, p)

2 qi = −∂F3

∂pi
, P i = −∂F3

∂Qi
, K = H +

∂F3

∂t

3 F3(Q, p) = −
∫
q(Q, p) dp , H(q, p)→ K(Q,P )
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Spatial translation and Frenet-Serret coordinates

General Hamiltonian

H0 =

√
(~P − q ~A)2c2 +m2c4 + qV (2)

Coordinate transformation
Parameter transformation: t→ s , H → −Ps = H

Coordinate transformation: Frenet-Serret

H(x, Px, y, Py, t,H0; s) = −(1 +
x

R
)

×
√

(H0 − qV )2

c2
− (Px − qAx)2 − (Py − qAy)2 −m2c2

− q
(

1 +
x

R

)
As (3)
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Scaling transformation (1)

From now on we set

(x, y)→ u , (Px, Py)→ Pu , (Ax, Ay)→ Au

With

P 2 =
(H0 − qV )2

c2
−m2c2

we can write

Hamiltonian

H(u, Pu, t,H0; s) = −
(

1 +
x

R

)√
P 2 − (Pu − qAu)

2 − q
(

1 +
x

R

)
As

(4)
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Scaling transformation (2)

We want to rescale H̃ → H
P0

with P0 = E0β0
c

For this we need to rescale the canonically conjugate
variables accordingly so that ũP̃u = uPu

P0
, s0Hs = tH0

P0

Scaling transformation

H̃ → H
P0
⇒ ũ→ u , P̃u → Pu

P0
, s0 → β0ct ,Hs → H0

E0β
2
0

We immediately relabel all ”∼”-variables and obtain:

H(u, Pu, s0, Hs; s) = −
(

1 +
x

R

)
×

√
P 2

P 2
0

−
(
Pu −

q

P0
Au

)2

− q

P0

(
1 +

x

R

)
As

(5)
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Magnetic rigidity

With the magnetic rigidity of the reference orbit P0
q = B0R and with

1
B0R

Au � Pu we can finally write 2

Hamiltonian

H(u, Pu, s0, Hs; s) = −
(

1 +
x

R

)√P 2

P 2
0

− P 2
u −

1

B0R

(
1 +

x

R

)
As

(6)

2R = 1/K: ring radius
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Transverse expansion

With P ≈ P0 and Pu � 1 we can expand the square root to obtain

H = −
(

1 +
x

R

) P

P0
+

1

2

(
1 +

x

R

) P0

P
P 2
u −

1

B0R

(
1 +

x

R

)
As (7)

We can see how the synchro-betatron coupling vanishes for
P = P0 where we obtain

H = −
(

1 +
x

R

)
+

1

2

(
1 +

x

R

)
P 2
u −

1

B0R

(
1 +

x

R

)
As (8)
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Vector potential expansion

The vector potential expansion can be obtained directly from
Laplace’s equation using the standard method of coefficient
recursion after a polynomial Ansatz. For a normal magnet,
neglecting fringe fields, the expansion becomes

As = −B0

(
x− 1

2R
x2 +

1

2R2
x3 − 1

2R3
x4

)
−B1

(
x2 − y2

2
− 1

6R
x3 +

4x4 − y4

24R2

)
−B2

(
x3 − 3xy2

6
− x4 − y4

24R

)
−B3

(
x4 − 6x2y2 + y4

24

)
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Transverse Hamiltonian

Inserting the vector potential expansion we obtain the transverse
Hamiltonian up to third order in x, y

Transverse Hamiltonian

H(x, Px, y, Py) =
1

2
P 2
u +

1

2

(
K2 + g

)
x2 − 1

2
gy2

+
1

6
Kgx3 +

1

6
fx3 − 1

2
Kgxy2 − 1

2
fxy2

K = 1
R

, g = B1
B0R

, f = B2
B0R
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The Transverse Hamiltonian
Canonical transformations
Coordinate and rescaling transformation
Transverse dynamics

Transverse Hamiltonian

Inserting the vector potential expansion we obtain the transverse
Hamiltonian up to third order in x, y
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