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Part |: Motivation and Model Introduction
Outlines Part Il: The Transverse Hamiltonian
Part Ill: The Synchro-Betatron Hamiltonian

Outline of Part Il

e The Transverse Hamiltonian
@ Canonical transformations
@ Coordinate and rescaling transformation
@ Transverse dynamics
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Part |: Motivation and Model Introduction
Outlines Part Il: The Transverse Hamiltonian
Part Ill: The Synchro-Betatron Hamiltonian

Outline of Part IlI

e The Synchro-Betatron Hamiltonian
@ Series of canonical transformations
@ RF fields
@ The full Synchro-Betatron Hamiltonian
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Outline

o Motivation
@ Collective effects in the longitudinal plane
@ Numerical and computational tools in accelerator physics
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

SPS ecloud effects

Frozen synchrotron motion:

Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

SPS ecloud effects

Linear synchrotron motion:

Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:

Kevin Li Synchro-Betatron Motion



Motivation Collective effects in the longitudinal plane

Numerical and computational tools

SPS ecloud effects

Nonlinear synchrotron motion:

Dynamics: 17.6e10 protons, 1e12 electrons Tune footprint:
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Motivation 1

@ Synchrotron motion does not preserve the longitudinal
position over several turns

@ The tune footprint is obtained over several turns
@ The color dimension looses its meaning
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Motivation 1

@ Synchrotron motion does not preserve the longitudinal
position over several turns

@ The tune footprint is obtained over several turns
@ The color dimension looses its meaning

= We need to find a quantity that is preserved under synchrotron
motion to refurnish the color dimension with a meaning
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Motivation 1

Hamiltonian for synchrotron motion
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A Equations of longitudinal dynamics @

Some times the bunch is made to sit in an accelerating bucket only to compensate
for external losses

« in a lepton storage ring, to compensate for synchrotron radiation losses

«in general, a bunch in a stationary bucket can move to a synchronous phase
different from 0 or 7 in order to compensate for impedance losses (see further)
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A Equations of longitudinal dynamics 7

Some times the bunch is made to sit in an accelerating bucket only to compensate

for external losses

* in a lepton storage ring, to compensate for synchrotron radiation los: Q

« in general, a bunch in a stationary bucket can move to a synchr &hase

different from 0 or 7 in order to compensate for impedance Ic& Qee further)
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Motivation 2

Numerical and Computational

Tools in Accelerator Physics

An introduction

‘Werner Herr
CERN, BE Department

http://cern.ch/Werner.Herr/METHODS
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Hamiltonian of particle in EM fields

For the Hamiltonian of a (relativistic) particle in a
electro-magnetic field we have:

H(T, P, 1) = e\ (F— eA(T,1))? + m2c2 + e (Z, 1)

where A(Z,t) is the vector potential and ®(&,t) the scalar
potential

In another form (in 3D, in terms of physical systems):
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Hamiltonia

For the Hamiltonian

electro-magnetic fiel
H(Z, P 1)

where A(Z,t) is the
potential

In another form (in 3D, in terms of physical systems):
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Motivation

Collective effects in the longitudinal plane
Numerical and computational tools

What this presentation should be about:
@ not a presentation of new results
@ by no means any claim for mathematical rigor
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Motivation

Collective effects in the longitudinal plane
Numerical and computational tools

What this presentation should be about:
@ not a presentation of new results
@ by no means any claim for mathematical rigor

@ rather an attempt to gather different ressources to summarize
the known theory in a more or less complete and
comprehensible manner

@ rather with an appeal to physical intuition
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Motivation Collective effects in the longitudinal plane

Numerical and computational tools

Literature

Physics:
@ [Goldstein: Classical Mechanics]
@ [Jackson: Classical Electrodynamics]
@ [Huang: Statistical Mechanics]
@ [Peskin/Schroeder: Quantum Field Theory]

Applied Hamiltonian dynamics:
@ [T. Suzuki: 1985]
@ [K. Symon: 1997]
@ [S. Tzenov: 2001]
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Basic physics

Basic Model . . . .
asic Mode Specialisation to classical electromagnetic theory

Outline

9 Basic Model
@ Basic physics
@ Specialisation to classical electromagnetic theory
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Basic physics
Specialisation to classical electromagnetic theory

Basic Model

We create our universe: two manifolds and one map

Initialisation:

Basic objects

@ Parameter manifold: M= R™
@ Configuration manifold: A = R"
@ Map: M- N

Derived objects

@ World bubble: ©=®UcCM)=R"
@ Phase space: Q=T*N =R
@ Jacobian: J = D® € M(m x n,R)

All physics is in finding ¢
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Initialisation:
We create our universe by declaring two manifolds and connecting
them with a map

@ The parameter manifold M is our world

@ The configuration manifold AV is some quantity we are
interested in

@ The map @ is an embedding of our world into the target space
and as such describes the evolution of the target space
quantities
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
@ In our intuition we are (always) using them
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
@ In our intuition we are (always) using them

@ We (always) start with a collection of points which are, a priori, completely
unstructured (i.e. a mesh of an accelerator structure (without connectivity
information) or the time steps in a particle tracking code (with no ordering))
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Basic physics

Basic Model . . . .
asic Mode Specialisation to classical electromagnetic theory

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
@ In our intuition we are (always) using them

@ We (always) start with a collection of points which are, a priori, completely
unstructured (i.e. a mesh of an accelerator structure (without connectivity
information) or the time steps in a particle tracking code (with no ordering))

@ We want to be able to talk about neighbourhoods, derivatives, tangent
spaces, metrics in order obtain a predictable evolution (a function of the
parameter manifold) for any quantity that lives in our world. Our collection of
points must thus be endowed with a smooth connectivity which is done
formally via a differentiable structure (equivalence class of atlases where an
atlas is a family of compatible charts on an open cover of the parameter
manifold'). Then, locally, our collection of points becomes isomorph to the
Euclidean space; it locally obtains the structure of a linear vector space
within which we are fully equipped with all our well-known tools of calculus

's. Abraham, Marsden pp. 31
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Basic physics
Specialisation to classical electromagnetic theory

Basic Model

Basic physics: the principle of least action

In this case we can define:

R

The action S is defined as the volume of the world bubble:

5= [ a0
o y

The principle of least action

Given a fixed subspace U, a map @ is physical if and only if the
action S is stationary

0S5 =0

N
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

The Lagrangian

To introduce a useful formalism it is expedient to write the action as

S:/ d@z/dm y/dthTZ/dmﬁ
(U) U 7y det( ) U !

Thus, we have introduced the Lagrangian

L=1/det(7JT)

Lagrangian
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

Classical limit and electromagnetic theory

@ Introduce classical limit

s=n\ <1
d0: characteristic dimensionless density parameter of a quantum gas
A= WQL:FLQT: thermal de Broglie wavelength
B

The action becomes the length of the world-line:
S=[dl, d?=-cdt® + di*

@ Introduce electromagnetic theory via U(1)-gauge coupling by
moving from the standard to the covariant derivative

Oy — D,y = 0y +igA,

A: gauge fields
The action becomes the covariant length of the world-line:
S=[Dy=[Ldt
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

Intuition of the classical limit

A small number of particles with a wavefunction that is represented as an
evolving Gaussian wavepackage: ¥ (z,t) — exp (—;—Q)
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Basic physics

Basic Model Specialisation to classical electromagnetic theory

Intuition of the classical limit

For sufficiently many particles at low densty constructive superposition of
wavefunctions establishes a correlation between space and time coordinates via
delta-functions: v (z,t) — §(z(t) — z') — z(t)

Space

oM Kevin Li Synchro-Betatron Motion 19/ 70



Basic physics

Basic Model Specialisation to classical electromagnetic theory

Intuition of electromagnetic theory

@ Gauge invariance of the Dirac field

G(@) = e Dip(x)
@ Directional derivative
ﬁé"l[;(f) _ hm 'l/’(m + hé,) - 1/1(%)
h—0 h
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Basic physics
Specialisation to classical electromagnetic theory

Basic Model

Intuition of electromagnetic theory

@ Gauge invariance of the Dirac field

() = ()
@ Directional derivative
ﬁg&(f) _ hm 'l/’(m + hé,) - ’l/}(x)
h—0 h
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Basic physics
Specialisation to classical electromagnetic theory

Basic Model

Intuition of electromagnetic theory

@ Gauge invariance of the Dirac field

() = ()
@ Directional derivative
ﬁg&(f) _ hm 'l/’(m + hé,) - ’l/}(x)
h—0 h

H

. —
¥(T)

. —
Ouip(Z)
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Basic physics

Basic Model S . 9
asic Mode Specialisation to classical electromagnetic theory

One-parameter action and electromagnetic Lagrangian

One-parameter action and electromagnetic Lagrangian

S:/£d4x S:/Ldt

_Q —
L = —pme/Tuat+ 5, A" || L = —mcwl—v—Q—qV—i—qﬁ-A
@
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Basic physics
Specialisation to classical electromagnetic theory

Basic Model

Electromagnetic Hamiltonian

Hamiltonian

A Legendre transform of the Lagrangian

L
H=Pg¢—L with P:a—,
dq

yields the Hamiltonian

—,

H(q,P,t):\/(ﬁ—q )2¢2 + m2ct 4+ qV (1)
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Symplectic structure
Basic Dynamics

Outline

e Basic Dynamics
@ The symplectic structure
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Symplectic structure
Basic Dynamics

Least action and Hamilton equations of motion

6S:6/qu—Hdt
- /6qu+P6(dq) — GH dt — H 6(dt)

om .ol

OH
— [ dgor—arsq— L arsq— 2 arsp — O dr st + dH ot
/P_._ g 1= 54 "1 5p ot ot

o0H oH 0H

Equations of motion
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Symplectic structure
Basic Dynamics

Symplectic structure

The Legendre transform makes the independent variable time and
together with the principle of least action/equations of motion unleashes
the full symplectic structure of the theory yielding:

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Symplectic structure

The Legendre transform makes the independent variable time and
together with the principle of least action/equations of motion unleashes
the full symplectic structure of the theory yielding:

@ the symplectic manifold (2, w°) (Phase space, Poisson bracket)

wo : TN X TN = R, (u,v) = wolu,v)

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Symplectic structure

The Legendre transform makes the independent variable time and
together with the principle of least action/equations of motion unleashes
the full symplectic structure of the theory yielding:

@ the symplectic manifold (2, w°) (Phase space, Poisson bracket)
wo : TN X TN = R, (u,v) = wolu,v)
@ because wy is nondegenerate, it defines a 1-form

wr: TN = TyN,  uwolu,-)  ((ul)

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Symplectic structure

The Legendre transform makes the independent variable time and
together with the principle of least action/equations of motion unleashes
the full symplectic structure of the theory yielding:

@ the symplectic manifold (2, w°) (Phase space, Poisson bracket)
wo : TN X TN = R, (u,v) = wolu,v)

@ because wy is nondegenerate, it defines a 1-form
w: TN = TyN,  u=wolu, ) ((ul)

@ let’s use this 1-form to implicitly define a very special vector field

wo(X i, Y)=—dH(Y) & (JX4,Y) = —(VH,Y)

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Hamiltonian vector field

We have thus defined the Hamiltonian vector field
Xy=J-VH=:H:

What is so special about this Hamiltonian vector field?

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Hamiltonian vector field

We have thus defined the Hamiltonian vector field
Xy=J-VH=:H:

What is so special about this Hamiltonian vector field?

@ Infinitesimal time evolution

S oH 0 _oH 0
9q® Opa, Opa Og%

Y(to) = —Xu - (o) = — : H : (to) = —[H, ¢(to)]

Xy=J-VH=

a=1

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Hamiltonian vector field

We have thus defined the Hamiltonian vector field
Xy=J-VH=:H:

What is so special about this Hamiltonian vector field?

@ Infinitesimal time evolution

S oH 0 _oH 0
9q® Opa, Opa Og%

Y(to) = —Xu - (o) = — : H : (to) = —[H, ¢(to)]

Xy=J-VH=

a=1

@ Finite time evolution

P(to +t) = exp(—: H : t)b(to)

geN,J= (_01 é) symplectic structure matrix
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Symplectic structure
Basic Dynamics

Hamiltonian vector field

We have thus defined the Hamiltonian vector field
Xy=J-VH=:H:

What is so special about this Hamiltonian vector field?

@ Infinitesimal time evolution

S oH 0 _oH 0
9q® Opa, Opa Og%

Y(to) = —Xu - (o) = — : H : (to) = —[H, ¢(to)]

Xy=J-VH=

a=1

@ Finite time evolution

P(to +t) = exp(—: H : t)b(to)

The Hamiltonian is the generator for translations in time for any function !

qE/\/',Jz(_O

1 . .
1 0 symplectic structure matrix
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Symplectic structure
Basic Dynamics

Liouville’s theorem

One of the many corollaries: preservation of the volume form on 2 (Liouville’s theorem)
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Symplectic structure
Basic Dynamics

Liouville’s theorem

One of the many corollaries: preservation of the volume form on 2 (Liouville’s theorem)
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Symplectic structure

Basic Dynamics

Liouville’s theorem

One of the many corollaries: preservation of the volume form on 2 (Liouville’s theorem)
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Symplectic structure
Basic Dynamics

Liouville’s theorem

One of the many corollaries: preservation of the volume form on 2 (Liouville’s theorem)
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