Synchro-Betatron Motion in Circular Accelerators

Kevin Li

March 30, 2011

Outline of Part I

(1) Motivation

- Collective effects in the longitudinal plane
- Numerical and computational tools in accelerator physics
(2) Basic Model
- Basic physics
- Specialisation to classical electromagnetic theory
(3) Basic Dynamics
- The symplectic structure

Outline of Part II

4 The Transverse Hamiltonian

- Canonical transformations
- Coordinate and rescaling transformation
- Transverse dynamics

Outline of Part III

(5) The Synchro-Betatron Hamiltonian

- Series of canonical transformations
- RF fields
- The full Synchro-Betatron Hamiltonian

Part I

Motivation and Model Introduction

Outline

(1) Motivation

- Collective effects in the longitudinal plane
- Numerical and computational tools in accelerator physicsBasic Model
- Basic physics
- Specialisation to classical electromagnetic theoryBasic Dynamics
- The symplectic structure

SPS ecloud effects

Frozen synchrotron motion:

Dynamics: 17.6 e 10 protons, 1 e 12 electrons
Tune footprint:

SPS ecloud effects

Linear synchrotron motion:

Dynamics: 17.6 e 10 protons, 1 e 12 electrons
Tune footprint:

SPS ecloud effects

Nonlinear synchrotron motion:

Dynamics: 17.6 e 10 protons, 1 e 12 electrons
Tune footprint:

Motivation 1

- Synchrotron motion does not preserve the longitudinal position over several turns
- The tune footprint is obtained over several turns
- The color dimension looses its meaning
\Rightarrow We need to find a quantity that is preserved under synchrotron
motion to refurnish the color dimension with a meaning

Motivation 1

- Synchrotron motion does not preserve the longitudinal position over several turns
- The tune footprint is obtained over several turns
- The color dimension looses its meaning
\Rightarrow We need to find a quantity that is preserved under synchrotron motion to refurnish the color dimension with a meaning

Collective effects in the longitudinal plane Numerical and computational tools

Motivation 1

Equations of longitudinal dynamics

Some times the bunch is made to sit in an accelerating bucket only to compensate for external losses

- in a lepton storage ring, to compensate for synchrotron radiation losses
- in general, a bunch in a stationary bucket can move to a synchronous phase different from 0 or π in order to compensate for impedance losses (see further)

$$
\begin{gathered}
\left\{\begin{array}{l}
\frac{d \zeta}{d t}=-\eta \beta c \delta \\
\frac{d \delta}{d t}=\frac{e V_{m}}{p_{0} C}\left[\sin \left(\frac{h \zeta}{R}+\Phi_{s}\right)-\sin \Phi_{s}\right]
\end{array}\right. \\
H=-\frac{1}{2} \beta c \eta \delta^{2}+\frac{e V_{m}}{2 \pi h p_{0}} \cos \left(\frac{h \zeta}{R}\right)+\frac{e V_{m} \sin \Phi_{s}}{p_{0} C} \zeta
\end{gathered}
$$

Equations of longitudinal dynamics

Some times the bunch is made to sit in an accelerating bucket only to compensate for external losses

- in a lepton storage ring, to compensate for synchrotron radiation losses?
- in general, a bunch in a stationary bucket can move to a synchromphase different from 0 or π in order to compensate for impedance lo sas (see further)

Motivation 2

Numerical and Computational Tools in Accelerator Physics

An introduction

Werner Herr
CERN, BE Department

http://cern.ch/Werner.Herr/METHODS

Hamiltonian of particle in EM fields

For the Hamiltonian of a (relativistic) particle in a electro-magnetic field we have:

$$
\mathcal{H}(\vec{x}, \vec{p}, t)=c \sqrt{(\vec{p}-e \vec{A}(\vec{x}, t))^{2}+m_{0}^{2} c^{2}}+e \Phi(\vec{x}, t)
$$

where $\vec{A}(\vec{x}, t)$ is the vector potential and $\Phi(\vec{x}, t)$ the scalar potential

In another form (in 3D, in terms of physical systems):

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1-\frac{2 p_{t}}{\beta}+p_{t}^{2}\right)}-\frac{x p_{t}}{\beta \rho}+\frac{x^{2}}{2 \rho^{2}}+\frac{\left(1-\beta^{2}\right) p_{t}^{2}}{2 \beta^{2}}+k_{1} \frac{x^{2}-y^{2}}{2}+V(x, y)
$$

Hamiltonia

For the Hamiltonian
electro-magnetic fiel

$$
\mathcal{H}(\vec{x}, \vec{p}, t)
$$

where $\vec{A}(\vec{x}, t)$ is the potential

ticle in EM fields

particle in a

In another form (in 3D, in terms of physical systems):

$$
\mathcal{H}=\frac{p_{x}^{2}+p_{y}^{2}}{2\left(1-\frac{2 p_{t}}{\beta}+p_{t}^{2}\right)}-\frac{x p_{t}}{\beta \rho}+\frac{x^{2}}{2 \rho^{2}}+\frac{\left(1-\beta^{2}\right) p_{t}^{2}}{2 \beta^{2}}+k_{1} \frac{x^{2}-y^{2}}{2}+V(x, y)
$$

Goal

What this presentation should be about:

- not a presentation of new results
- by no means any claim for mathematical rigor
- rather an attempt to gather different ressources to summarize the known theory in a more or less complete and comprehensible manner
- rather with an appeal to physical intuition

Goal

What this presentation should be about:

- not a presentation of new results
- by no means any claim for mathematical rigor
- rather an attempt to gather different ressources to summarize the known theory in a more or less complete and comprehensible manner
- rather with an appeal to physical intuition

Literature

Physics:

- [Goldstein: Classical Mechanics]
- [Jackson: Classical Electrodynamics]
- [Huang: Statistical Mechanics]
- [Peskin/Schroeder: Quantum Field Theory]

Applied Hamiltonian dynamics:

- [T. Suzuki: 1985]
- [K. Symon: 1997]
- [S. Tzenov: 2001]

Outline

(1) Motivation

- Collective effects in the longitudinal plane
 - Numerical and computational tools in accelerator physics

(2) Basic Model

- Basic physics
- Specialisation to classical electromagnetic theory
(3) Basic Dynamics
- The symplectic structure

We create our universe: two manifolds and one map

Initialisation:

Basic objects

- Parameter manifold: $\mathcal{M} \cong \mathbb{R}^{m}$
- Configuration manifold: $\mathcal{N} \cong \mathbb{R}^{n}$
- Map:
$\Phi: \mathcal{M} \rightarrow \mathcal{N}$

Derived objects

- World bubble:
$\Theta=\Phi(U \subset \mathcal{M}) \cong \mathbb{R}^{m}$
- Phase space:
$\Omega=T^{*} \mathcal{N} \cong \mathbb{R}^{2 n}$
- Jacobian:
$\mathcal{J}=D \Phi \in \mathbb{M}(m \times n, \mathbb{R})$

All physics is in finding Φ

We create our universe: two manifolds and one map

Initialisation:
We create our universe by declaring two manifolds and connecting them with a map

- The parameter manifold \mathcal{M} is our world
- The configuration manifold \mathcal{N} is some quantity we are interested in
- The map Φ is an embedding of our world into the target space and as such describes the evolution of the target space quantities

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?
In our intuition we are (always) using them

- We (always) start with a collection of points which are, a priori, completely unstructured (i.e. a mesh of an accelerator structure (without connectivity information) or the time steps in a particle tracking code (with no ordering))
- We want to be able to talk about neighbourhoods, derivatives, tangent spaces, metrics in order obtain a predictable evolution (a function of the parameter manifold) for any quantity that lives in our world. Our collection of points must thus be endowed with a smooth connectivity which is done formally via a differentiable structure (equivalence class of atlases where an atlas is a family of compatible charts on an open cover of the parameter manifold ${ }^{1}$). Then, locally, our collection of points becomes isomorph to the Euclidean space; it locally obtains the structure of a linear vector space within which we are fully equipped with all our well-known tools of calculus

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?

- In our intuition we are (always) using them
- We (always) start with a collection of points which are, a priori, completely unstructured (i.e. a mesh of an accelerator structure (without connectivity information) or the time steps in a particle tracking code (with no ordering))
- We want to be able to talk about neighbourhoods, derivatives, tangent spaces, metrics in order obtain a predictable evolution (a function of the parameter manifold) for any quantity that lives in our world. Our collection of points must thus be endowed with a smooth connectivity which is done formally via a differentiable structure (equivalence class of atlases where an atlas is a family of compatible charts on an open cover of the parameter manifold ${ }^{11}$). Then, locally, our collection of points becomes isomorph to the Euclidean space; it locally obtains the structure of a linear vector space within which we are fully equipped with all our well-known tools of calculus

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?

- In our intuition we are (always) using them
- We (always) start with a collection of points which are, a priori, completely unstructured (i.e. a mesh of an accelerator structure (without connectivity information) or the time steps in a particle tracking code (with no ordering))
- We want to be able to talk about neighbourhoods, derivatives, tangent spaces, metrics in order obtain a predictable evolution (a function of the parameter manifold) for any quantity that lives in our world. Our collection of points must thus be endowed with a smooth connectivity which is done formally via a differentiable structure (equivalence class of atlases where an atlas is a family of compatible charts on an open cover of the parameter manifold ${ }^{1}$). Then, locally, our collection of points becomes isomorph to the Euclidean space; it locally obtains the structure of a linear vector space within which we are fully equipped with all our well-known tools of calculus

We create our universe: two manifolds and one map

Why do we need manifolds and all that stuff?

- In our intuition we are (always) using them
- We (always) start with a collection of points which are, a priori, completely unstructured (i.e. a mesh of an accelerator structure (without connectivity information) or the time steps in a particle tracking code (with no ordering))
- We want to be able to talk about neighbourhoods, derivatives, tangent spaces, metrics in order obtain a predictable evolution (a function of the parameter manifold) for any quantity that lives in our world. Our collection of points must thus be endowed with a smooth connectivity which is done formally via a differentiable structure (equivalence class of atlases where an atlas is a family of compatible charts on an open cover of the parameter manifold ${ }^{1}$). Then, locally, our collection of points becomes isomorph to the Euclidean space; it locally obtains the structure of a linear vector space within which we are fully equipped with all our well-known tools of calculus

[^0]
Basic physics: the principle of least action

In this case we can define:

Action

The action S is defined as the volume of the world bubble:

$$
S=\int_{\Theta} d \Phi
$$

The principle of least action

Given a fixed subspace U, a map Φ is physical if and only if the action S is stationary

$$
\delta S=0
$$

The Lagrangian

To introduce a useful formalism it is expedient to write the action as
Action

$$
S=\int_{\Phi(U)} d \Phi=\int_{U} d^{m} x \sqrt{\operatorname{det}\left(\mathcal{J} \mathcal{J}^{T}\right)}=\int_{U} d^{m} x \mathcal{L}
$$

Thus, we have introduced the Lagrangian
Lagrangian

$$
\mathcal{L}=\sqrt{\operatorname{det}\left(\mathcal{J ~ J}^{T}\right)}
$$

Classical limit and electromagnetic theory

- Introduce classical limit

$$
\delta=n \lambda^{3} \ll 1
$$

δ : characteristic dimensionless density parameter of a quantum gas
$\lambda=\sqrt{\frac{2 \pi \hbar^{2}}{m k_{B} T}}$: thermal de Broglie wavelength
The action becomes the length of the world-line:
$S=\int d l, d l^{2}=-c^{2} d t^{2}+d \vec{x}^{2}$

- Introduce electromagnetic theory via $\mathrm{U}(1)$-gauge coupling by moving from the standard to the covariant derivative

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g A_{\mu}
$$

A : gauge fields
The action becomes the covariant length of the world-line:
$S=\int D_{\mu} l=\int L d t$

Intuition of the classical limit

A small number of particles with a wavefunction that is represented as an evolving Gaussian wavepackage: $\psi(x, t) \rightarrow \exp \left(-\frac{x^{2}}{\sigma^{2}}\right)$

Intuition of the classical limit

For sufficiently many particles at low densty constructive superposition of wavefunctions establishes a correlation between space and time coordinates via delta-functions: $\psi(x, t) \rightarrow \delta\left(x(t)-x^{\prime}\right) \rightarrow x(t)$

Intuition of electromagnetic theory

- Gauge invariance of the Dirac field

$$
\psi(x) \rightarrow e^{i \alpha(x)} \psi(x)
$$

- Directional derivative

$$
\vec{\nabla}_{\vec{e}} \vec{\psi}(\vec{x})=\lim _{h \rightarrow 0} \frac{\vec{\psi}(\vec{x}+h \vec{e})-\vec{\psi}(\vec{x})}{h}
$$

Intuition of electromagnetic theory

- Gauge invariance of the Dirac field

$$
\psi(x) \rightarrow e^{i \alpha(x)} \psi(x)
$$

- Directional derivative

$$
\vec{\nabla}_{\vec{e}} \vec{\psi}(\vec{x})=\lim _{h \rightarrow 0} \frac{\vec{\psi}(\vec{x}+h \vec{e})-\vec{\psi}(\vec{x})}{h}
$$

$$
\begin{gathered}
\vec{\psi}(\vec{x}) \\
\partial_{\mu} \vec{\psi}(\vec{x})
\end{gathered}
$$

Intuition of electromagnetic theory

- Gauge invariance of the Dirac field

$$
\psi(x) \rightarrow e^{i \alpha(x)} \psi(x)
$$

- Directional derivative

$$
\vec{\nabla}_{\vec{e}} \vec{\psi}(\vec{x})=\lim _{h \rightarrow 0} \frac{\vec{\psi}(\vec{x}+h \vec{e})-\vec{\psi}(\vec{x})}{h}
$$

One-parameter action and electromagnetic Lagrangian

One-parameter action and electromagnetic Lagrangian

$$
\begin{aligned}
S & =\int \mathcal{L} d^{4} x \\
\mathcal{L} & =-\rho_{m} c \sqrt{\dot{x}_{\mu} \dot{x}^{\mu}}+j_{\mu} A^{\mu}
\end{aligned} \| S=\int L d t
$$

Electromagnetic Hamiltonian

Hamiltonian

A Legendre transform of the Lagrangian

$$
H=P \dot{q}-L \quad \text { with } \quad P=\frac{\partial L}{\partial \dot{q}}
$$

yields the Hamiltonian

$$
\begin{equation*}
H(q, P, t)=\sqrt{(\vec{P}-q \vec{A})^{2} c^{2}+m^{2} c^{4}}+q V \tag{1}
\end{equation*}
$$

Outline

(1) Motivation

- Collective effects in the longitudinal plane
- Numerical and computational tools in accelerator physics
(2)

Basic Model

- Basic physics
- Specialisation to classical electromagnetic theory
(3) Basic Dynamics
- The symplectic structure

Least action and Hamilton equations of motion

$$
\begin{aligned}
\delta S & =\delta \int P d q-H d t \\
& =\int \delta P d q+P \delta(d q)-\delta H d t-H \delta(d t) \\
& =\int_{\text {P.I. }} d q \delta P-d P \delta q-\frac{\partial H}{\partial q} d t \delta q-\frac{\partial H}{\partial P} d t \delta P-\frac{\partial H}{\partial t} d t \delta t+d H \delta t \\
& =\int\left(d q-\frac{\partial H}{\partial P} d t\right) \delta P-\left(d P+\frac{\partial H}{\partial q} d t\right) \delta q+\left(d H-\frac{\partial H}{\partial t} d t\right) \delta t \\
& =0
\end{aligned}
$$

Equations of motion

$$
\dot{q}=\frac{\partial H}{\partial P}, \quad \dot{P}=-\frac{\partial H}{\partial q}, \quad \dot{H}=\frac{\partial H}{\partial t}
$$

Symplectic structure

The Legendre transform makes the independent variable time and together with the principle of least action/equations of motion unleashes the full symplectic structure of the theory yielding:

- the symplectic manifold $\left(\Omega, \omega^{0}\right)$ (Phase space, Poisson bracket)
- because ω_{0} is nondegenerate, it defines a 1-form
- let's use this 1 -form to implicitly define a very special vector field
$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Symplectic structure

The Legendre transform makes the independent variable time and together with the principle of least action/equations of motion unleashes the full symplectic structure of the theory yielding:

- the symplectic manifold $\left(\Omega, \omega^{0}\right)$ (Phase space, Poisson bracket)

$$
\omega_{0}: T_{q} \mathcal{N} \times T_{q} \mathcal{N} \rightarrow \mathbb{R}, \quad(u, v) \mapsto \omega_{0}(u, v)
$$

- because ω_{0} is nondegenerate, it defines a 1-form
- let's use this 1-form to implicitly define a very special vector field
$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Symplectic structure

The Legendre transform makes the independent variable time and together with the principle of least action/equations of motion unleashes the full symplectic structure of the theory yielding:

- the symplectic manifold $\left(\Omega, \omega^{0}\right)$ (Phase space, Poisson bracket)

$$
\omega_{0}: T_{q} \mathcal{N} \times T_{q} \mathcal{N} \rightarrow \mathbb{R}, \quad(u, v) \mapsto \omega_{0}(u, v)
$$

- because ω_{0} is nondegenerate, it defines a 1 -form

$$
\omega_{1}: T_{q} \mathcal{N} \rightarrow T_{q}^{*} \mathcal{N}, \quad u \mapsto \omega_{0}(u, \cdot) \quad(\langle u|)
$$

- let's use this 1-form to implicitly define a very special vector field
$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Symplectic structure

The Legendre transform makes the independent variable time and together with the principle of least action/equations of motion unleashes the full symplectic structure of the theory yielding:

- the symplectic manifold $\left(\Omega, \omega^{0}\right)$ (Phase space, Poisson bracket)

$$
\omega_{0}: T_{q} \mathcal{N} \times T_{q} \mathcal{N} \rightarrow \mathbb{R}, \quad(u, v) \mapsto \omega_{0}(u, v)
$$

- because ω_{0} is nondegenerate, it defines a 1 -form

$$
\omega_{1}: T_{q} \mathcal{N} \rightarrow T_{q}^{*} \mathcal{N}, \quad u \mapsto \omega_{0}(u, \cdot) \quad(\langle u|)
$$

- let's use this 1 -form to implicitly define a very special vector field

$$
\omega_{0}\left(X_{H}, Y\right)=-d H(Y) \Leftrightarrow\left(J X_{H}, Y\right)=-(\vec{\nabla} H, Y)
$$

$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Hamiltonian vector field

We have thus defined the Hamiltonian vector field

$$
X_{H}=J \cdot \vec{\nabla} H=: H:
$$

What is so special about this Hamiltonian vector field?

- Infinitesimal time evolution

- Finite time evolution

$$
\psi\left(t_{0}+t\right)=\exp (-: H: t) \psi\left(t_{0}\right)
$$

The Hamiltonian is the generator for translations in time for any function ψ ! $q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Hamiltonian vector field

We have thus defined the Hamiltonian vector field

$$
X_{H}=J \cdot \vec{\nabla} H=: H:
$$

What is so special about this Hamiltonian vector field?

- Infinitesimal time evolution

$$
\begin{aligned}
X_{H} & =J \cdot \vec{\nabla} H=\sum_{\alpha=1}^{f} \frac{\partial H}{\partial q^{\alpha}} \frac{\partial}{\partial p_{\alpha}}-\frac{\partial H}{\partial p_{\alpha}} \frac{\partial}{\partial q^{\alpha}} \\
\dot{\psi}\left(t_{0}\right) & =-X_{H} \cdot \psi\left(t_{0}\right)=-: H: \psi\left(t_{0}\right)=-\left[H, \psi\left(t_{0}\right)\right]
\end{aligned}
$$

- Finite time evolution
$\psi\left(t_{0}+t\right)=\exp (-: H: t) \psi\left(t_{0}\right)$

The Hamiltonian is the generator for translations in time for any function ψ.
$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Hamiltonian vector field

We have thus defined the Hamiltonian vector field

$$
X_{H}=J \cdot \vec{\nabla} H=: H:
$$

What is so special about this Hamiltonian vector field?

- Infinitesimal time evolution

$$
\begin{aligned}
X_{H} & =J \cdot \vec{\nabla} H=\sum_{\alpha=1}^{f} \frac{\partial H}{\partial q^{\alpha}} \frac{\partial}{\partial p_{\alpha}}-\frac{\partial H}{\partial p_{\alpha}} \frac{\partial}{\partial q^{\alpha}} \\
\dot{\psi}\left(t_{0}\right) & =-X_{H} \cdot \psi\left(t_{0}\right)=-: H: \psi\left(t_{0}\right)=-\left[H, \psi\left(t_{0}\right)\right]
\end{aligned}
$$

- Finite time evolution

$$
\psi\left(t_{0}+t\right)=\exp (-: H: t) \psi\left(t_{0}\right)
$$

The Hamiltonian is the generator for translations in time for any function ψ !
$q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Hamiltonian vector field

We have thus defined the Hamiltonian vector field

$$
X_{H}=J \cdot \vec{\nabla} H=: H:
$$

What is so special about this Hamiltonian vector field?

- Infinitesimal time evolution

$$
\begin{aligned}
X_{H} & =J \cdot \vec{\nabla} H=\sum_{\alpha=1}^{f} \frac{\partial H}{\partial q^{\alpha}} \frac{\partial}{\partial p_{\alpha}}-\frac{\partial H}{\partial p_{\alpha}} \frac{\partial}{\partial q^{\alpha}} \\
\dot{\psi}\left(t_{0}\right) & =-X_{H} \cdot \psi\left(t_{0}\right)=-: H: \psi\left(t_{0}\right)=-\left[H, \psi\left(t_{0}\right)\right]
\end{aligned}
$$

- Finite time evolution

$$
\psi\left(t_{0}+t\right)=\exp (-: H: t) \psi\left(t_{0}\right)
$$

The Hamiltonian is the generator for translations in time for any function ψ ! $q \in \mathcal{N}, J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ symplectic structure matrix

Liouville's theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville's theorem)

Liouville's theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville's theorem)

Liouville's theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville's theorem)

Liouville's theorem

One of the many corollaries: preservation of the volume form on Ω (Liouville's theorem)

[^0]: ${ }^{1}$ s. Abraham, Marsden pp. 31

