BSRT Beam Synchrotron Radiation Telescope

Christian Hansen

Many Thanks to Federico Roncarolo!

BSRT Position

- After the D3 dipole magnet in IR4 BSRT detects synchrotron light due to
 - Deflection by D3
 - * E > I.5-2 TeV
 - An "undulator"
 - * 450 GeV < E < 2-3 TeV

Sources for the BSRT

- The p-beam is deflected by the D3 dipole
 - Synchrotron light is radiated

- A superconducting undulator (just before D3)
 has four variating magnetic poles that variates By
 - The beam radiates enough synchrotron light also at low energies, < 3 TeV</p>

Optical System

- The synchrotron light is deviated into the optical system by an extraction mirror
- ... and guided (by other mirrors) to CCD cameras (2010; only the "Slow Camera")

Optical System

- To optimize the resolution BSRT has
 - movable stages (for focusing depending on source)
 - optical filters for light colour and density
 - adjustable video camera gains

Photon Intensity

Intensity measurements by the PMT (see previous slide) and simulations gives synchrotron light intensity as a function of beam energy

Simulation performed with Synchrotron Radiation Workshop (SRW) code

• Measurements agree with theory

Video Camera

- The camera is a "Proxicam HL4 S NIR"
- Beam images are recorded at I Hz and published each sec.

Pilot bunch with 5e9 protons

- DC Mode: Averaging over all bunches and 20 ms
- PULSED Mode: Averaging over time gates (min 25 ns) that can be connected to certain bunches
- Gaussian fits on beam images provide horizontal and vertical emittances (see next slide)

Results from 18th Nov.

• Transversal emittance measurements of I 2 proton trains with 48 bunches each

(each point is average of ~5 seconds)

BEAM1 Emittance [µm]

Correction Factors

- Results from BSRT can however be biased by e.g. possible installation inaccuracies
- The Wire Scan (WS) Monitors are therefore used as reference
 - → Correction factors are applied to the measured BSRT emittances, $\sigma = \sqrt{\sigma_{meas}^2 \sigma_{corr}^2}$, so that results gets as close as possible to the WS results
 - Example of BSRT correction factors:

Protons after 22 Oct		450 GeV	3500 GeV	
B 1	Н	0.60	0.50	
	V	0.95	0.55	

Corrected BSRT Results

• After correction BSRT results align good with the WS results:

