Flat beams in SixTrack

Beam-Beam in SixTrack

Tracked particle

Beam-Beam in SixTrack

Beam-Beam in SixTrack

Electrical field of a two-dimensional gaussian charge

$$
\begin{aligned}
& E_{x}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)}} \Im\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}^{2}\right)}}\right)-\mathrm{e}^{\left.-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}{ }^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}^{2}\right)}}\right)\right)} \begin{array}{l}
E_{y}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)}} \Re\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}^{2}\right)}}\right)-\mathrm{e}^{-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)\right)
\end{array}\right) .
\end{aligned}
$$

M. Bassetti and G.A. Erskine
"Closed expression for the electrical field of a two-dimensional gaussian charge"
CERN-ISR-TH/80-06

Electrical field of a two-dimensional gaussian charge

this formula is already implemented in SixTrack

$$
\begin{aligned}
& E_{x}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}^{2}-\sigma_{y}{ }^{2}\right)}} \Im\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}^{2}\right)}}\right)-\mathrm{e}^{\left.-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}{ }^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}^{2}-\sigma_{\mathrm{y}}^{2}\right)}}\right)\right)} \begin{array}{l}
E_{y}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}{ }^{2}-\sigma_{y}{ }^{2}\right)}} \Re\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)-\mathrm{e}^{-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}{ }^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)\right)
\end{array}\right) .
\end{aligned}
$$

Electrical field of a two-dimensional gaussian charge

but SixTrack does not calculate the optics for Beam2 (actually Beam 2 does not exists for SixTrack).

$$
\begin{aligned}
& E_{x}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}{ }^{2}-\sigma_{y}{ }^{2}\right)}} \Im\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)-\mathrm{e}^{-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}{ }^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)\right) \\
& E_{y}=\frac{Q}{2 \epsilon_{0} \sqrt{2 \pi\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)}} \Re\left(\operatorname{Errf}\left(\frac{\mathrm{x}+\mathrm{iy}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)-\mathrm{e}^{-\frac{\mathrm{x}^{2}}{2 \sigma_{\mathrm{x}}{ }^{2}}+\frac{\mathrm{y}^{2}}{2 \sigma_{\mathrm{y}}{ }^{2}}} \operatorname{Errf}\left(\frac{\mathrm{x} \frac{\sigma_{\mathrm{y}}}{\sigma_{\mathrm{x}}}+\mathrm{iy} \frac{\sigma_{\mathrm{x}}}{\sigma_{\mathrm{y}}}}{\sqrt{2\left(\sigma_{\mathrm{x}}{ }^{2}-\sigma_{\mathrm{y}}{ }^{2}\right)}}\right)\right)
\end{aligned}
$$

Electrical field of a two-dimensional gaussian charge
but SixTrack does not calculate the optics for Beam2 (actually Beam 2 does not exists for SixTrack).
this means that the positions and the sigmas of the bunches of the Beam 2 must be provided in some way.

Electrical field of a two-dimensional gaussian charge
but SixTrack does not calculate the optics for Beam2 (actually Beam 2 does not exists for SixTrack).
this means that the positions and the sigmas of the bunches of the Beam 2 must be provided in some way.

Today the positions are passed from MadX and the sigmas are calculated from the Beam 1 guessing that the optics is symmetric or anti-symmetric.

Today the positions are passed from MadX and the sigmas are calculated from the Beam 1 guessing that the optics is symmetric or anti-symmetric.

Today the positions are passed from MadX and the sigmas are calculated from the Beam 1 guessing that the optics is symmetric or anti-symmetric.

This cannot work for flat beams (the optics is not antisymmetric), so what I do is to pass the sigmas of Beam 2 from MadX.

Today the positions are passed from MadX and the sigmas are calculated from the Beam 1 guessing that the optics is symmetric or anti-symmetric.

This cannot work for flat beams (the optics is not antisymmetric), so what I do is to pass the sigmas of Beam 2 from MadX.

A problem of this approach is that SixTrack expects the sigmas as functions of the coupled β functions $\left(\beta_{11}, \beta_{12} \ldots\right)$ while MadX evaluates the sigmas in the decoupled case. For the purpose of the LHC (and the upgrade) the linear coupling is small and the approximation can work.

In practice what is new

When the "sixtrack" command is invoked in MadX the fc. 2 propose now three additional columns: $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$ and σ_{s} (not used).

To read these three additional columns in SixTrack, the flag lhc, in the section BEAM of the fort. 3 file, must be set equal to 2 .
(lhc=0 is for symmetric optics, lhc=1 is for antisymmetric optics and lhc=2 is for "read from file").

Tests performed

I verified that the parameters are loaded correctly.

I tracked an optics with round beams loading the parameters and computing it with SixTrack and I obtained the same results.

I compared the tunes of MadX and SixTrack with a flat beams optics and I obtain the same values.

I did a basic tracking with MadX and SixTrack and the results are the same.

