ICE Meeting, 4 Aug 2010

toward Isold

Beam instabilities in the PSB

in collaboration with A. Findlay, B. Mikulec, M. Chanel, D. Quatraro

→ Observations of high-intensity phenomena in the PSB

- Head-tail instabilities along the cycle
- Ring 4 losses before extraction Booster ring
- → 2010 MDs on Ring 4 losses
 - Observation
 - Correction

The PSB instabilities....

→ The beam is transversely stabilized in the PSB by a transverse feedback system → In particular, the feedback is necessary in the horizontal plane for high intensity beams (both h=1 and h=2)

 \rightarrow In normal operation, the feedback is off in the vertical plane

→ What happens if the feedback system is switched off also in H? Depending on the injected intensity, the beam can become unstable at different points along the cycle!

Instability at c=370ms (I)

Taking snapshots of the $\Delta_{x,y}$ signal along the bunch while the instability is developing, we can see **3 nodes**

Instability at c=370ms (II)

 \rightarrow In fact, the number of nodes has been found to depend on the beam intensity

Instability at c=370ms (III)

→ Unexplained observations....

Instability at c=370ms (IV)

→ Both theory and simulations (not including space charge) would predict that, with a chromatic shift of 5 MHz ($\xi_x \approx -1$), the first unstable mode is n=6 and has a rise time of ~12ms for 500 x 10¹⁰ p → This mode would appear due to resistive wall, as any other impedance source would excite even higher order modes (n>6)

Instability at c=470ms

- \rightarrow Also the second instability has the typical head-tail features
- \rightarrow The number of nodes is higher (usually 4)
- → The rise time of this instability is typically longer than for the first instability

Getting the following Δ signal profiles

Instability at c=690ms

- \rightarrow Hard to recognize a specific head-tail mode from the Δ signal
- \rightarrow The rise time of this instability is comparable to that of the first instability

Getting the following Δ signal profiles

Instability at c=690ms

→ Losses at around the same time in the cycle were also observed in Ring 4 at the beginning of our MD on July 1st

→ They could be efficiently suppressed by reducing the gain of the phase loop between the cavities (non-ppm hardware change), and increasing the gain of the TFB.

→ Even with the feedback system on, Ring 4 has suffered for years from an instability appearing right before extraction for intensities above 800 x 10¹⁰ p
 → This instability would trigger the BLMs on the ejection line and stop the beam to ISOLDE

- → The maximum intensity in Ring 4 was limited in operation to 800 x 10¹⁰ p
- → C04 beam-loading, considered a potential responsible, was excluded during a dedicated MD last February, when C04 was short-circuited and the loss was not cured

→ The Wire Scanner measurements show some bizarre profiles during the instability in both transverse planes

→ The 'second' signal on the right side is measured shortly before extraction and could be a sign of instability or emittance blow up

V profile

H profile

Extraction, the scan takes ~8ms to get to this point. The measurement of the 'extra-beam' starts ~2ms before.

 \rightarrow During the **MD session on July 1**st, after an adjustment of the beam radial position close to extraction (which removed a transient before the synchro), we attempted to **change the working point at extraction** in order to possibly cure the unstable motion that causes the beam loss

✓ If the loss is caused by some resonance crossing enhanced by the space charge with high intensity, we can hope to move farther away from this resonance
 ✓ If it is a coherent instability in the horizontal plane, we could suppress it by coupling more to the stable vertical plane (setting the tunes closer together)

The GFA of the Ring 4 Qstrips (BR4.GSQCF) was extended and pulsed close to the end of the cycle. This had the effect of moving the tunes closer together

→ And voilà!

→ Finally we could accelerate up to almost 1000 x 10^{10} p in Ring 4 without the BLMs being triggered

-		XSG p	noeni	x	~^	^^_\~~/_^	^^^			•
File	View	Control	Optior	าร						
Cycle	from	BX.SLFT-TEJ	×	BIX.AMC-TINJ	× BE	K.AMC-TEJ	×	NORMGPS[31] ISO	er,s
C(ms)	000275	765.00055		274.99975	80	34.99940		2010 Jul	01 1 4:-	40:20
		BR1.STRT	R -	BR2.STRTR -	BR3.S	TRTR – B	R4.51	RTR	BR1.S BR2.S BR3.S BR4.S	TRTR TRTR TRTR TRTR TRTR
140	U-					1				
120	0-									
100	D-									
801 F	0-									
1 60 0	0-									
40	D					BEX.AM	C-TEJ			
20	0-	BIX. AMC-TINJ								
1	0				1	BX.SLFT-TE	J			
-20	04,	300 4	00	500 C	600 (ms)	700	8	90 9	ioo	1000
Updat	e Unfree	ze Freeze	۰ <u>س</u>	୰୲୰ଢ଼୲୰	iii ≎i	* * # 4	- 🎬 -	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	뿂 :	99) 99

	> 14 I> 🔿 🕇 🗉	🔷 01 Jul	2010	14:39:49 F	SB - NOR	MGPS, 06		SFTPRO) - 01			
am	pler Rtr Bims	Linac2 In	t PS	Trafos								
0.7	2											_
0.15	5-0.285	j	-					_	_	_	_	
0.1	1	63 %	9 6 —	0.166	0.164	0.162	0.156	0.154	0.151	0.15	j3	
2.0					36 /0	32.01	97 %	0 66	98 /0	101	%	
0.0.	BCT 02	BCT 06		BCT 97	BCT 10	BCT 20	BCT	ВСТ	BCT	BC 61	Ĵ	
0		Ring 1		Ring 2		Ring 3		Ring 4		Sum		
0	LTB.BCT60	1866	-	1851		1586		2101		7320		
1	BI.BCT10	1826	98 %	1822	98 %	1572	99 %	2103	100 %	7237	99 %	0
2	BI.BCT20	1679	92 %	1690	93 %	1424	91 %	1889	90 %	0	0 %	1
3	Injection	1190	71 %	1201	ι 71 %	942	66 %	1323	70 %	4655	-	2
4	Capture	895	75 %	890	74 %	854	91 %	1018	77 %	3657	79 %	3
5	Accel.	817	91 %	i 795	89 %	824	96 %	960	94 %	3396	93 %	4
6	BT.BCT	794	97 %	840	106 %	719	87 %	951	99 %	3305	97 %	5
7	BTP.BCT									- 8	-0 %	6
8	BTM.BCT									26	1 %	6
9	BCT112									3218	97 %	6
10	GPS BCT213									3290	102 %	9
11	HRS BCT325									-22	-1%	9
	Normal									LIN V	Natchdo	a
	TLCP				ISO	_GPS				PSB	Vatchdo Blm's ()a)
Increment		Ring 1 Ring 2		ig 2	Ring 3 R			Ring 4 All Rings				
		11	11.8 11.8			9.8			13.0 -1.0			
Keen Values		•	lear Memo	nv.		• •		••••	11	_	-	

→ We decided to adjust the working point at extraction in all 4 rings using the tune editor instead of the Q-strips

→ We basically programmed the H and V tunes to be equal at extraction (4.200) to enhance the coupling (they were before Q_x =4.17 and Q_y =4.23)

 \rightarrow This could stabilize the beam in Ring 4 and allowed extraction of up to 1100 x 10¹⁰ p !!!

→ M. Chanel went then back to the original working points at extraction and enhanced the coupling at extraction by using the skew quadrupole BR4.QSKH0 in Ring 4
→ This setting proved to cure the losses at extraction, too. However, we are presently running with the modified working point at extraction and BR4.QSKH0 set to its original 0.78A
→ Consequently, we tend to believe that by bringing the tunes closer together we have actually stabilized the horizontal plane by coupling it to the stable vertical plane.

with low losses in the ejection line