REQUEST FROM THE CCinS WORKING GROUP

Elias Métral

- Proposition for the locations in the SPS of the future
 - KEKB Crab Cavity => 2012?
 - New CERN collimator (with integrated BPMS) => 2010
 - SLAC rotatable collimator => 2011?
- It satisfies Ralph Assmann's requests
- We have the green light from Gianluigi Arduini for aperture considerations
 - Dimensions of the SLAC collimator (full H × V): 60 mm × 60 (or 80) mm
 - Dimensions of the CERN collimator (full H × V): 66 mm × 80 mm

Using the 2009 LHC optics ($Q_x = 26.13$ and $Q_y = 26.18$)

POSITIONS OF THE EQUIPMENTS (2/4)

Elias Métral, 17/12/2009

POSITIONS OF THE EQUIPMENTS (3/4)

POSITIONS OF THE EQUIPMENTS (4/4)

Elias Métral, 17/12/2009

ORBIT SHIFTS DUE TO THE CRAB CAVITY KICK (1/4)

Linearized formula (only valid for a small bunch in RF wavelength)

$$x_{1,2} = z \frac{V \omega \sqrt{\beta_{x0} \beta_{x1,2}}}{c (E/e)} \left| \frac{\cos(\mu_{x1,2} - \mu_{x0} - \pi Q_x)}{2 \sin(\pi Q_x)} \right|$$

- Numerical values: *z* is the longitudinal distance from the bunch centre ($\sigma_z = 15 \text{ cm}$), *V* = 1.5 MV is the CC voltage, *c* = 3E8 m/s, *p* = 120 GeV/c (*E* is the total energy in eV), *f* = 511 MHz ($\omega = 2 \pi$ f) for 4 × 24.95 = 99.8 ns bunch spacing, β_{x0} is the horiz. beta function at the CC and $\beta_{x1,2}$ is the horiz. beta function at the collimator (1 or 2), μ_{x0} is the horiz. betafunction phase advance at the CC and $\mu_{x1,2}$ is the horiz. betafunction phase advance at the CC and $\mu_{x1,2}$ is the horiz. betafunction phase advance at the collimator, and $Q_x = 26.13$ is the horiz tune
 - \Rightarrow x₁ = 0.05 mm at the 1st collimator for z = σ_z
 - \Rightarrow x₂ = 0.68 mm at the 2nd collimator for z = σ_z

ORBIT SHIFTS DUE TO THE CRAB CAVITY KICK (2/4)

- Assuming the nominal rms. norm. horizontal emittance for LHC beams (~ 3 μ m), the horizontal beam size (neglecting dispersion) at the 2nd collimator is σ_{x2} = 0.76 mm
 - ⇒ $x_2 = 0.68$ mm (at the 2nd collimator for $z = \sigma_z$) is comparable to the rms horiz. beam size $\sigma_{x2} = 0.76$ mm
 - ⇒ For smaller horizontal emittances than 3 µm, the effect will be even larger
- Reminder: As the horizontal beam size scales with 1 / E^{1/2} and the orbit shift scales with 1 / E, the lower the energy the better (to have the largest crab effect vs. the beam size)

⇒ At 55 GeV/c, $x_2 = 1.48$ mm (at the 2nd collimator for z = σ_z) and the rms horiz. beam size is $\sigma_{x2} = 1.13$ mm

ORBIT SHIFTS DUE TO THE CRAB CAVITY KICK (3/4)

 Using the exact formula instead of the linearized one (as the bunch length is ~ RF wavelength), one has

$$x_{1,2} = \sin\left(\phi_s + \frac{\omega z}{c}\right) \frac{V}{(E/e)} \sqrt{\beta_{x0} \beta_{x1,2}} \left| \frac{\cos\left(\mu_{x1,2} - \mu_{x0} - \pi Q_x\right)}{2\sin\left(\pi Q_x\right)} \right|$$

- \Rightarrow x₁ = 0.03 mm at the 1st collimator for z = σ_z (instead of 0.05 mm)
- \Rightarrow x₂ = 0.42 mm at the 2nd collimator for z = σ_z (instead of 0.68 mm)

ORBIT SHIFTS DUE TO THE CRAB CAVITY KICK (4/4)

- In this case, $x_2 = 0.42$ mm (at the 2nd collimator for $z = \sigma_z$) is may be too small vs. the rms horiz. beam size $\sigma_{x2} = 0.76$ mm
- To increase the crab effect vs. the horizontal beam size, one should
 - Either use a smaller horizontal emittance: 2 μm
 - x₂ = 0.42 mm
 - σ_{x2} = 0.63 mm
 - Or use a lower beam energy: 55 GeV/c
 - x₂ = 0.92 mm
 - $\sigma_{x2} = 1.13 \text{ mm} (\text{for } 3 \mu \text{m})$
 - Or use both a smaller horiz. emittance (2 µm) and a lower beam energy (55 GeV/c)
 - x₂ = 0.92 mm
 - σ_{x2} = 0.92 mm